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1 Introduction

The solar meridional circulation is an axisymmetric poloidal flow with velocity
amplitudes ranging from 10 to 20 m s−1 confined to the convection zone (Hath-
away and Rightmire, 2010). It arises due to an imbalance between Reynolds
stresses and buoyancy forces, which are in turn sustained by convection and
differential rotation (Charbonneau, 2005). Its velocity field and geometry set
the strength of the polar magnetic field of the Sun and the sunspot activity over
a solar cycle (Hathaway and Rightmire, 2010). Thus, understanding this phe-
nomenon as a means of latitudinal transport of heat, angular momentum, and
magnetic fields can help to better understand and constrain existing dynamo
models.

In fact, the meridional circulation has become an integral part of many
dynamo models today, where it is either directly incorporated in, or produced
by the model (Hathaway, 1996). For example, the Babcock-Leighton dynamo
theory utilizes the meridional circulation to explain the poleward transport of
the surface magnetic field, and the equatorward migration of sunspots as seen
in butterfly diagrams (Hathaway, 1996; Dikpati and Charbonneau, 1999). In
other three-dimensional models of the dynamics of rotating convection zones
such that of Glatzmaier and Gilman (1982), a poleward meridional circulation
is generated by the model.

However, despite numerous endeavors, we have not yet reached a coherent
picture of the meridional flow in that many studies over the years have come to
conflicting conclusions. The reason for such inconsistencies and disagreements is
attributed to the flow’s weak velocities relative to other more dominant motions
such as granulation and super-granulation. This renders the task of isolating
the meridional flow signal from that of other sources taxing and to some degree
inaccurate. Based on helioseismologic observations of two years of SDO data,
the results of Zhao et al. (2013) suggest that the solar meridional flow has a
double-cell structure, with photospheric poleward velocities of about 15 m s−1

and subsurface equatorward velocities of ∼ 10 m s−1. On the other hand, based
on time-distance helioseismologic analysis of two solar cycles from 1996-2019,
Gizon et al. (2020) find that the meridional circulation is a single-cell in each
hemisphere.

This project is a continuation of Gizon et al. (2020), where we wish not only
to improve on some aspects of the previous approach, but to grasp a better
understanding of possible links between time-distance helioseismology and he-
lioseismic holography. This will be discussed in detail after we explain what we
mean by optimally averaged time-distance helioseismology.

2 Method and Mathematics

In this section, we present a precis on the principles of time-distance helioseis-
mology and lay out its core equations. Next, a model of the meridional flow
involving a stream function will be discussed, and employed to infer the flow’s
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subsurface velocity field.

2.1 Time-distance helioseismology

Figure 1 depicts a schematic of the problem of concern in time-distance helio-
seismology. The objective of time-distance helioseismology is to link an acoustic
wave’s observed travel time τi to the underlying physical properties of the solar
interior qα. Here, α represents any quantity of interest (e.g., internal sound
speed, velocity field), and τi is the time taken by the wave to travel some dis-
tance ∆i on the photosphere between two points x1 and x2. The subscript i
represents the index of a datapoint in the observational data. In the case of the
meridional circulation, which is a 2D problem, it suffices to label a datapoint
with the distance ∆i = |x2 − x1| and the location of the midpoint λi = θ(∆i/2),
where θ is often measured in latitude (see the bottom panel of Figure 1).

Travel times can be extracted from observation using the cross-correlation
function of signals. Suppose two time series Φ(x1; t) and Φ(x2; t) have been
recorded over an observation period T , where Φ is a physical quantity observed
at the photosphere (e.g., line-of-sight velocity data provided by Dopplergrams).
Then the cross-correlation of the signals can be formed by the following integral,

C(x1,x2; t) =
1

T

∫ T

0

Φ(x1; t′)Φ(x2; t′ + t) dt′, (1)

where t is called the lag time. A peak in C corresponds to the detection of iden-
tical patterns existing in both signals, indicating that a wave already observed
in, say, Φ(x1; t) has been reobserved in Φ(x2; t). Then, various methods can be
used to relate the lag time t to travel times τ (see e.g., Roth et al., 2007).

Figure 2 shows the cross-correlation function of SDO Dopplergrams with a
cadence of 45 s observed over 8 days, after applying various spatial and temporal
averaging methods to eliminate the background noise inherent to the stochastic
photospheric motions. We can number each ridge by the order of its appearance
n from bottom to top, starting with n = 0 to identify the bottom-most ridge.
Then, each ridge identifies an ensemble of surface waves that ricochet off the
internal surface n times at locations other than x1 and x2 before arriving at x2.
For instance, the first ridge corresponds to the waves that travel directly from
x1 to x2, while the second ridge is associated with all the waves that first bounce
off the surface at some location other than x2 before reaching the destination.

The key idea of time-distance helioseismology is that since a wave interacts
with the internal material through its journey, its travel time contains useful
information about the convection zone (Gizon and Birch, 2005). Once the ob-
served travel times are known, the central task of time-distance helioseismology
is broken down into the forward, and inverse problems, which we discuss below.

2.1.1 The forward problem

To formulate the relationship between τi and qα, one needs to adopt an existing
solar model wherein the τ̄i and q̄αmodel are known. Then, the difference between
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the observed and model’s travel times δτi = τi − τ̄i can be linked to a small
perturbation in the δqα = qα − q̄α of the model through the linear relation
(Hughes et al., 2007)

δτi =
∑
α

∫
δqα(r)Kα(r) dv, (2)

where the integral is over the volume (or surface area in 2D) of interest, Kα

is known as the sensitivity kernel for quantity α, and the summation is over
all the quantities to be inferred from the data. Equation 2 is known as the
forward problem. The kernels prescribe the degree to which the model is locally
sensitive to a small perturbation in qα at position r, and may be derived by
Born or Rytov approximations (see Birch and Kosovichev, 2000).

2.1.2 The inverse problem

Once the δτi and Kα are known, an inversion technique is employed to infer
δqα from observation. In this study, we focus our attention only to two popular
and powerful inversion techniques known as “Regularized Least Squares” (RLS)
used by Gizon et al. (2020), and “Subtractive Optimally Localized Averages”
(SOLA).

RLS and SOLA both aim to minimize a quadratic cost function subject to
specific regularization constraints. However, the core distinction between the
two methods lie in the global treatment of the optimization problem in RLS,
and the local treatment of SOLA.

The RLS method In RLS, the optimization task aims at minimizing a cost
function under certain constraints. The constraints are fed into the minimiza-
tion process through a regularization matrix denoted by Dα chosen by a priori
considerations about the nature of the problem. Thence, given the vector of
travel times τ , the sensitivity kernels Kα, and a covariance (or noise) matrix Λ
encapsulating the inherent noise in the data (see Gizon and Birch, 2004, for a
discussion of noise covariance), the cost function of interest in RLS is define by

‖Λ−1/2 (Kαδq
α − τ) ‖2 + λ‖Dαδq

α‖2, (3)

in which ‖.‖ is the L2 norm. Here, λ is a scalar variable known as the regular-
ization parameter, which together with δqα are the unknowns of the problem.
The parameter λ is determined a posteriori through comparison of the results
with some test cases obtained from synthetic data (Gizon et al., 2020). It is evi-
dent that minimizing this function yields a “global” solution to the optimization
problem.

The SOLA method On the other hand, in SOLA we seek to find local
solutions that minimize a quadratic function known as the cost function at a
given target point r0. The minimization process in SOLA is done in relation
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with a given target function (usually taken to be the Gaussian function), whose
role is to impart a certain mean behavior to the sensitivity kernel specific to
the target location r0. Unlike RLS which directly solves for δqα, the objective
of SOLA is to find appropriate weighting coefficients cαi (r0) at a given target
point r0 such that ∫

K̄(r, r0, c
α) dr = 1, (4)

where the integrand is called the “averaging kernel” defined by

K̄(r0, r, c
α) =

∑
i∈Γ

cαi (r0)Kα
i (r), (5)

in which Γ is the set of all the pairs (x1,x2) in the data. The idea behind
SOLA in time-distance helioseismology is to cut off the contribution of the data
far from the target (measurement) point r0. For instance, when inferring the
velocity of the meridional flow at a location in the upper hemisphere, we a priori
expect that no information (data) from the lower hemisphere should leak into
the solutions. This locality of the solutions which adds to the robustness of the
method is encoded in the weighting coefficients cαi (r0). Figure 7 illustrates this
point, where the weighting coefficients plotted in the left panel are such that the
resulting averaging kernel ends up reshaping into a new local sensitivity kernel
that is now only sensitive to the information around the target point.

2.2 Forward problem for the meridional circulation

As mentioned before, the meridional circulation is a 2D flow with a velocity
field made up of a radial and a polar component, i.e., U = (Ur, Uθ). The
aim is to infer the subsurface velocity field from the travel time data τi of Gizon
et al. (2020). The forward problem for U associated with a particular mid-point
latitude and distance i = (λ,∆) is given by

τi =

∫ π

0

∫ R�

rb

Ki · ρU r sin θ dr dθ, (6)

whereKi = (Kr
i ,K

θ
i ) is the sensitivity kernel vector associated with the velocity

field. Figure 3 depicts the sensitivity kernel components for a specific data point
corresponding to ∆i = 30◦, λi = 10◦.

Previously, Gizon et al. (2020) directly solved for U by imposing the bound-
ary conditions that confine the flow to the convection zone, and the conservation
of mass principle through additional constraints in the RLS problem.

In this study, however, we will instead solve for the stream function ψ that
generates the velocity field U . This has the advantage of meeting the mass
conservation requirement by default. Additionally, setting up the boundary
conditions for ψ can be directly implemented without a need to add further
constraints in the inverse problem.
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Figure 1: Schematic diagrams in (top) 3D and (bottom) 2D perspectives of the
time-distance helioseismologic model of the meridional flow. An acoustic ray
(shown by the red arrows) observed at x1 travels through the solar interior and,
thanks to the stratification of the convection zone, reflects back to the surface
at some other point x2.
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Figure 2: The cross-correlation function corresponding to 8 days worth of Dopp-
lergram data obtained from the Solar Dynamic Observatory at a cadence of 45
s. Courtesy of Chris Hanson (NYU Abu Dhabi).

7



To do so, we notice that the incompressibility inherent to the meridional flow
can be directly imposed by expressing the mass flux in terms of ψ prescribed in
the spherical coordinate system (r, θ, ϕ) as follows

ρU = ∇×
(
ϕ̂

ψ

r sin θ

)
= r̂

∂θψ

r2 sin θ
− θ̂ ∂rψ

r sin θ
, (7)

where r̂, θ̂, and ϕ̂ are respectively the radial, polar, and azimuthal unit vectors.
Substituting this in Eq. (6) gives

τi =

∫ π

0

∫ R�

rb

Kr
i ∂θψ

r
dr dθ −

∫ π

0

∫ R�

rb

Kθ
i ∂rψ dr dθ, (8)

Performing integration by parts yields

τi =

∫ R�

rb

1

r

[ ∫ π

0

∂θ (Kr
i ψ) dθ −

∫ π

0

ψ ∂θK
r
i dθ

]
dr

−
∫ π

0

[ ∫ R�

rb

∂r
(
Kθ
i ψ
)
dr −

∫ R�

rb

ψ ∂rK
θ
i dr

]
dθ. (9)

This can be further simplified by imposing appropriate boundary conditions.
At the radial boundaries (r = rb, R�), we expect no flow entering or escaping
the system. To meet these requirements, we must choose Ur ∝ ∂θψ = 0. At the
polar boundaries (θ = 0, π), the flow must be radial and vanish at the radial
boundaries. Selecting Uθ ∝ ∂rψ = 0 at θ = 0 and θ = π meets these constraints.
Committing the boundary conditions, Eq. (9) can be re-written as

τi =

∫ π

0

∫ R�

rb

ψ

[
∂rK

θ
i −

∂θK
r
i

r

]
dr dθ + Ci, (10)

where Ci are given by the BCs according to

Ci =

[
ψ

∫ R�

rb

Kr
i

r
dr

]π
0

−
[
ψ

∫ π

0

Kθ
i dr

]R�

rb

. (11)

However, ψ is any continuous function satisfying the BCs, and hence, can be
chosen to vanish identically at the boundaries. Note that this is not a superfluous
boundary condition, but merely a simplifying restriction on the freedom of choice
of ψ. Thereby, Ci = 0 and we arrive at the final form of the forward problem
for the stream function,

τi =

∫ π

0

∫ R�

rb

Kiψ dr dθ, (12)

where Ki is the modified sensitivity kernel for the stream function ψ given by

Ki = ∂rK
θ
i −

∂θK
r
i

r
. (13)
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Figure 3: The radial and polar components of the sensitivity kernel used by
Gizon et al. (2020). Shown as an illustrative example, the plot corresponds to
the specific center location λi and the separation distance ∆i as labeled.
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2.3 Inverse problem

As mentioned before, the averaging sensitivity kernel for ψ can be defined by

K̄(r0, r, ω, c) =
∑
i∈Γ

ci(r0)Ki(r, ω)

= c ·K, (14)

where Γ is the set of all the rays associated with the observed waves, and r0 is
a target point at which we wish to infer the value of ψ, and ci are the weighting
coefficients. In order to obtain statistically cogent results, the averaging kernel
is required to normalize to unity, hence∫

K̄(r0, r, ω, c) dr = 1. (15)

The SOLA problem for a single real-valued averaging sensitivity kernel takes
the following form

L(c, µ) =

∫ ∣∣K̄(r0, r, ω, c)− T (r0, r)
∣∣2 dr + λ

∑
i,j∈Γ

ci(r0)Eijcj(r0)

+ µ

[∫
K̄(r0, r, ω, c) dr − 1

]
, (16)

where T is a target function, and µ is a Lagrange multiplier, and E is the
covariance matrix. ∂L/∂µ = 0 simply returns the normalization constraint set
out in Eq. (15). On the other hand, setting ∂L/∂cm = 0 yields∑

i∈Γ

ci

[ ∫
KiKm dr + λEim

]
︸ ︷︷ ︸

Mmi

+
µ

2

∫
Km dr =

∫
T Km dr︸ ︷︷ ︸
Dm

. (17)

The terms inside the square brackets define the elements of a Γ× Γ Hermitian
matrix M . The integral on the RHS gives the elements of a Γ×1 column vector
D. We may merge Eqs. 15 and 17 into a single matrix equation by defining the
following augmented matrices

D̃ =

(
D
1

)
(Γ+1)×1

(18)

X̃ =

(
c
µ/2

)
(Γ+1)×1

(19)

M̃ =


M

∫
K dr

∫
KT dr 0


(Γ+1)×(Γ+1)

, (20)
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where T is means transpose. Thus, we have

M̃X̃ = D̃. (21)

Note that M̃ is Hermitian, and consequently invertible. As such, we may find
X̃ by

X̃ = M̃−1D̃. (22)

Once X̃, and hence c are known, the inversion process can be readily completed
by finding the averaging stream function ψ̄ through

ψ̄ω(r0) =

∫
K(r0, r, ω, c)ψ(r) dr dθ =

∑
i∈Γ

ci(r0)τi. (23)

3 Results

Having set up the mathematical framework, here we will present the findings of
the project achieved thus far. The code for all the computations is written in
Python and is capable of parallel computation.

3.1 Recovering travel times from the stream function

Let us first verify the method by reproducing travel times of the previous study
by Gizon et al. (2020) using the modified kernel K derived in Eq. (12). Figure 4
shows K for the same data point as Figure 3, at ∆i = 30◦, λi = 10◦.

To construct ψ, we will use the velocity profiles inferred from the 1996-2008
and 2008-2019 data sets of Gizon et al. (2020). Equation 7 can be integrated to
find ψ given the velocity field components Ur or Uθ according to

ψ =

∫ π

0

ρUrr2 sin θ dθ, (24)

or equivalently

ψ = −
∫ R�

rb

ρUθr sin θ dr. (25)

Although either one of Eqs. 24 or 25 can be used to obtain the stream function
directly from a velocity component (Ur or Uθ), nevertheless, in practice, certain
sources of numerical error arise which may render one component more accurate
and favorable. In our inferred flow models, the dominant velocity component
was Uθ, and hence was used to obtain ψ from the Equation 25. Figure 5 por-
trays the stream function ψ (top left), the second-time reconstructed velocity
components (top middle and right), and the associated errors (bottom) corre-
sponding to the 2008-2019 data set. It is worth mentioning that in our numerical
calculations, it was interestingly found that integrating from the solar surface
at R� down to the bottom of the convection zone at rb significantly increased
the accuracy ψ. We suspect that this has to do with the fact that numerical
integration is nothing but a finite summation of discrete numbers, and hence

11



Figure 4: The modified sensitivity kernel for the stream function shown for the
same combination of λi and ∆i as Figure 3 for illustrative purposes.
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Figure 5: (Top left) The stream function ψ extracted from the inferred merid-
ional velocity field of Gizon et al. (2020) using Eq. (25). (Top middle and right)
The velocity field components back-calculated from the stream function. (Bot-
tom) The errors associated with re-computing the velocity components from
ψ.

summing from the larger values of the integrand of Eq. (25) at the solar surface
down to the smaller values at the bottom of the convection zone can remarkably
boost the integration precision.

With the stream function at hand, we are now able to use Eq. (12) and
regenerate the travel times of Gizon et al. (2020) in a reverse process. Figure 6
depicts the scatter plot of the recovered travel times using the stream function
and the modified sensitivity kernel. The matching of the regenerated travel time
data and the identity line (shown in red) indicates a maximum error of less than
1%.

3.2 Recovering ψ from the averaging kernel

As one last corroborative task to test the validity of the SOLA scheme outlined
in Section 2.3, we employ the modified kernel K and a Cartesian Gaussian target
function

T (r, θ) = exp

(
− (r − r0)2 cos2(θ) + (r − r0)2 sin2(θ)

σ2

)
, (26)

to compute the mass matrix of Equation 18 and its inverse. Once M−1 is known,
it can be used to find the averaging coefficients ci and finally utilize them to
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Figure 6: Scatter plot of the reference travel time (red) data of Gizon et al.
(2020) versus that recovered from the stream function (blue).

invert for ψ through Eq. (23). Figure 7 depicts the scatter plot of the averaging
coefficients (left), the averaging kernel (middle), and the Gaussian function used
in this example (right) at the target point r = 0.9R� and θ = 40◦ latitude. For
this specific case, Eq. (23) yields

ψ̄(r0)

ψ(r0)
= 1.05, (27)

which is a reasonable result since the previous model is expected to have more
accuracy near the solar surface and a matching answer for ψ̄ is indicative of
high fidelity of the current scheme.

4 Remaining Work

For the remainder of the project, we will include

• optimal choices for target functions and other parameters

• extend the method to directly inverting cross-correlation data instead of
travel times

• compare the method with other inversion schemes and helioseismology
methods such as ”helioseismic holography”.

In particular, we are interested in learning if there is any connection at a deeper
level between local inversions methods like SOLA and helioseismic holography.
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Figure 7: The weighting coefficients (left), averaging kernel (middle), and the
target function (right) corresponding to the SOLA minimization problem at the
target point r0 = 0.9R� and θ = 40◦.
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