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Nuclear Neural Networks - Implementing machine-learning methods for stellar nucleosynthesis
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1. INTRODUCTION

Massive stars usually end their life in core collapse

supernovae (CCSNe) explosions where the core of the

star collapses to form a neutron star (NS) or a black

hole (BH) releasing gravitational energy during the col-

lapse. The explosion mechanism of CCSNe has been

broadly studied over the past decades (e.g., Bethe &

Wilson 1985; Langer & Woosley 1996; Heger et al. 2000;

Woosley & Janka 2005; Papish & Soker 2011; Janka et

al. 2016; Kresse et al. 2021; Shishkin & Soker 2023).

However it is still unclear how the gravitational energy

from the collapse of the core is able to explode the star.

One of the main challenges of modelling CCSNe explo-

sions is the computational bottleneck of elements nucle-

osynthesis prior to and during the explosion. Due to

the large number of isotopes that are formed modelling

nucleosynthesis together with other physical processes

crucial for stellar evolution with reasonable accuracy is

hardly impossible even using powerful supercomputers.

Therefore, in order to explore the explosion mechanism

it is common to use small nets of isotopes, which leads

to inaccurate results regarding the nucleosynthesis and

energetic of the explosion.

The goal of our project is to improve the current un-

derstanding of supernova explosion physics by improv-

ing the accuracy of modelling the late stages of stel-

lar nucleosynthesis. We are working on overcoming the

nucleosynthesis computational barrier by replacing the

solvers of the complicated differential equations of nu-

cleosynthesis in stellar evolution codes with neural net-

works. Such an approach has the potential to accelerate

detailed computation of nucleosynthesis by many orders

of magnitude, hence enabling the inclusion of impor-

tant physical processes that could not be included so far.

This will enable the exploration of supernova explosions

with stellar evolution codes and could shed light on the

explosion mechanism and even on the formation of BHs.

2. MODELLING THE LATE STAGES OF STELLAR

NUCLEOSYNTHESIS

We use the stellar evolution code mesa (Modules for

Experiments in Stellar Astrophysics; Paxton et al. 2011;

Paxton et al. 2013; Paxton et al. 2015; Paxton et al.

2018; Paxton et al. 2019; Jermyn et al. 2023) to evolve a

single star of massMZAMS = 20M⊙ and solar metallicity

Z = 0.02 from zero age main sequence (ZAMS) to core

collapse. We perform three separate runs of this stellar

model using nets with different numbers of isotopes (22

isotopes, 80 isotopes and 151 isotopes) and explore the

elemental composition and stellar profiles right before

the collapse of the core. We examine the results of the

electron fraction Ye in late core burning phases as it

is crucial to determine the ’explodability’ of stars since

electron captures lead to the collapse of the core prior

to the CCSNe event.

The usual test case that have been used to evolve mas-

sive stars until core collapse with mesa contains 21 or

22 isotopes at the most. We show that this is prob-

lematic since that amount of isotopes does not provide

enough accuracy to resolve nucleosynthesis in massive

stars. One way this is manifested is by a non-physical

behaviour of the electron fraction Ye throughout the

core. As we can see by looking at the upper left sub-

panel of Fig. 1a and Fig. 1b (red curves), in a certain

part of the core Ye drops outwards even though the ma-

terial should be more neutronized as we go deeper in

the core. This is since heavier stable isotopes, which

are richer in neutrons, tend to be formed in hotter and

denser areas where it is easier to overcome the Coulomb

barrier. The reason for the nonphysical behavior of Ye

in the 22 isotopes net lies in the fact that mesa imple-
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(a) Before the drop in Ye, approx22 (b) After the drop in Ye, approx22

Figure 1. (a) Left panels: Y 2
e (upper panel), density (middle panel) and temperature (lower panel) profiles. Right panel: The

composition in mass coordinate M = 1.15M⊙ before the decrease in the electron fraction Ye in the mesa run with 22 isotopes.
(b) Left panels: The same as in (a). Right panel: The composition in mass coordinate M = 1.175M⊙ after the decrease in Ye

for the same run.

ments electron capture in a single reaction, and when

T, ρ conditions for this reaction are not met it stops

abruptly, leading to the discontinuity between two mass

shells in the star. This drop in the electron fraction be-

come less and less prominent as the numbers of isotopes

in the net grows.

In Figs. 1a and 1b we can also see the composition

right before and right after the drop in Ye for a net of 22

isotopes. We note the significant decrease in Fe54 and

increase in Fe56 right after the nonphysical decrease in

Ye. This interchange depends on the (many) particular

isotope that we are not including in our nets and on the

rates of ”fake reactions” through which the nucleosyn-

thesis is performed in cases where isotopes that should

be part of the reactants or products in the formation of

other isotopes are not included in the net (see Fig. 14

in Marchant et al. 2019).

To find the smallest net of isotopes that will give rea-

sonable results for Ye we ran bbq, which is a wrapper to

the mesa one zone burner keeping T = 7 × 109 K and

ρ = 3 × 108 K constant for the entire run. We ran ten

nets with different numbers of isotopes from 22 to 3335.

To find from which initial composition we should start

the runs, we performed experiments trying different ini-

tial compositions, e.g., a uniform distribution, compo-

sitions that start with a single isotope, and the more

physical case of a composition taken from the full mesa

run with a net of 151 isotopes. For runs with larger nets

we assumed zero contribution to begin with from iso-

topes that are not included in mesa151. Since the larger

isotope nets do not necessarily fully contain smaller nets,

we made sure to normalize the composition. We found

that after a long enough time, the runs converged to the

same final composition regardless of the initial one (for

a given net), i.e. the system reached nuclear statistical

equilibrium. Our purpose in these runs was to find the

smallest net of isotopes that still gives the same result

for Ye and for the final composition as the large nets,

in order to understand which net of isotopes we should

choose to generate the input database for our neural

networks.

As can seen in Fig. 2, we found that the equilibrium

value of Ye for the net of 22 isotopes is very different then

for larger nets of isotopes implying that including only

22 isotopes in simulations of massive stars is not enough,

in accordance with our conclusions based on Fig. 1a and

Fig. 1b. The equilibrium value of the electron fraction is

around the same value for the rest of the larger nets we

examined. Therefore, we decided that we will begin our

project by training our neural networks to predict the

electron fraction and composition at late core burning

phases for a net that contain 80 isotopes.

We generate training sets for the neural networks by

running bbq with a net of 80 isotopes for periods of

time that are longer than the convergence time of the

strong nuclear reactions but shorter than typical times of

weak nuclear interactions. We sample the temperatures

and densities quasi-randomly in the region 108 K < T <

109.9 K, 107 g cm−3 < ρ < 109 g cm−3. We generate the

compositions randomly since creating a quasi-random
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Figure 2. Equilibrium electron fraction at the end of the
bbq runs at fixed temperature and density vs the isotopes
number in the net.

distribution of the composition is very challenging due

to the fact that all the abundances in the composition

are not independent (as they sum to 1). To further

constrain our parameter space we intend to look at the

typical composition from a mesa model, and set the

main isotopes roughly at those values (within a few %)

and pick the rest at random re-normalizing everything

at the end.

3. A LITTLE DETOUR - A BUG IN MESA

Additionally to comparing the equilibrium value of

the electron fraction for bbq runs with different iso-

topes nets we examined the equilibrium compositions.

We found that the equilibrium composition we get for

running a net with 201 isotopes resembles the equilib-

rium abundances for runs with nets of 833-3335 isotopes.

The equilibrium composition for the net of 80 isotopes is

qualitatively consistent with these compositions as well.

However, we got strange results for the final composition

of two medium size nets (330 isotopes, 495 isotopes) that

yield totally different results, as can be seen in Fig 3.

From comparing the lists of isotopes between the dif-

ferent nets we concluded that surprisingly, the presence

of tritium in the medium nets (and its absence in the

smaller and larger nets) led to this prominent difference

in final compositions. Narrowing this down, we found

that there is a specific reaction that causes this effect:

n + n + He4 +He4 → h3 + Li7, (1)

which was even more surprising since the probability

of a four-particle reaction is expected to be negligible.

We found that the rate of this reaction in mesa is 20-24

orders of magnitude larger than the rate in the literature

(Malaney & Fowler 1989).

We discovered that mesa miscalculates the rates of

reactions that consume energy for all reactions involv-

ing more than two reactants and/or products. This is

since mesa calculates these reaction rates from detailed

balance considerations and seems to omit a phase space

factor related to the number of particles involved in the

reactions. Even though there is a relatively small num-

ber of reactions that this bug affects, it can have a huge

impact on the nucleosynthesis results in high tempera-

tures and densities in nets with a large number of iso-

topes. However, we do not expect this bug to affect

most stellar evolution calculations, especially for mod-

els that include the standard (commonly used) isotopes

nets. For more information on this bug you can see the

GitHub issue we opened. We are currently working on

fixing this bug.

4. NUCLEAR NEURAL NETWORKS

We used PyTorch Lightning to build our nuclear

neutral networks (NNNs). Our current neural networks

architecture is composed from an input layer that con-

tains the temperature, density and initial abundance of

80 isotopes, two hidden layers and an output layer of

the composition after a fixed timestep (see Fig. 4). In

the future, we will generalize our neural networks to in-

clude the timestep as an input, and to predict the energy

lost by neutrinos during reactions that involve the weak

nuclear force.

In Figs. 5a - 5c we present the results of the NNN

trained on our largest training set that contains 6 ×
104 data points for the current architecture. In the left

panels we show the final composition obtained from our

bbq runs, and the right panels show the predictions of

the NNN for the final composition. The best results

so far (Fig. 5a) has 4% error in the composition, the

average results (Fig. 5b) has 28% error and the worse

results (Fig 5c) has 131% error. In Fig 6 we can see the

relative error of the abundance losses for every isotope

that is included in our initial net.

To test whether enlarging our data sets has the poten-

tial to substantially increase the accuracy of our results

we plot the abundance loss function of the NNN as a

function of the training set size in Fig. 7. We can see

from the figure that the loss keeps decreasing as the

training sets get larger, implying that we can signifi-

cantly improve our results by generating more training

sets, as we expected due to the high dimensionality of

our problem.

5. SUMMARY AND DISCUSSION

https://github.com/MESAHub/mesa/issues/575
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(a) Equilibrium composition of mesa201 (b) Equilibrium composition of mesa330

Figure 3. (a) Composition in nuclear statistical equilibrium of a bbq run where T = 7× 109 K, ρ = 3× 108 K for a net that
contains 201 isotopes. (b) Composition in nuclear statistical equilibrium for a bbq run with the same initial parameters except
the initial net that contains 330 isotopes.

Figure 4. Our nuclear neural network (NNN) architecture. The NNN is composed two hidden layers. At the moment the
input layer maps the temperature, density and initial abundance of 80 isotopes to 128 neurons, the first hidden layer maps 128
neurons to 256 neurons, the second hidden layer maps these 256 neurons to other 256 neurons and the output layer maps the
256 neurons to the final abundance of 80 isotopes. Adapted from Gaudio et al. (2021).

In this work we designed and trained neural networks

to predict the abundances of isotopes at late core burn-

ing phases. In section 2 we used the stellar evolution

code mesa to evolve a single star with ZAMS mass

MZAMS = 20M⊙ and showed the inadequacy of explor-

ing CCSNe with small isotopes nets. We run bbq and

found that a net of 80 isotopes gives the same result

for the electron fraction right before the collapse as nets

with thousands of isotopes, making it sufficient to train

our NNNs to predict the composition of bbq runs with

80 isotopes given fixed temperatures and densities. We

used PyTorch Lightning to build neural networks

and trained them on sets that contain 6×104 data points

(section 4).

Even though we only reproduced the results qualita-

tively, based on Fig. 7 we are optimistic that by en-
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(a) The best results from our nuclear neural networks (NNNs) so far. Left panel:
The equilibrium composition obtained from running bbq with logT = 9.821,
logρ = 7.105 and uniform composition. Right panel: The prediction of our
NNN for the same input parameters.

(b) The average result from our NNNs so far. Left and right panels are the
same as in Fig 5a for logT = 8.941, logρ = 8.446

(c) The worst result from our NNNs so far. Left and right panels are the same
as in Fig 5a for logT = 8.457, logρ = 7.781

Figure 5. Best (a), average (b) and worst (c) predictions of the equilibrium compositing by our nuclear neural networks.
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Figure 6. Relative error of the abundance losses of isotopes
with N neutrons and Z protons for our largest data sample.

Figure 7. Abundance loss as a function of the training set
size on a logarithmic scale.

larging our training sets and considering different neu-

ral networks architectures we will be able to sufficiently

increase the accuracy of our results to the point of inte-

grating the NNNs into mesa, hence making stellar nu-

cleosynthesis computations faster and more robust. To

enable this we intend to train our NNNs to predict the

composition for arbitrary timesteps, and to predict the

energy lost by neutrinos during the nucleosynthesis of

elements. When we sufficiently increase the accuracy of

our results, the NNNs could be used to replace the nucle-

osynthesis computations in hydrodynamical simulations

as well. Our main conclusion from the work performed

during the Kavli summer program is that neural net-

works are a promising tool for nucleosynthesis compu-

tations and could be used to successfully model late core

burning phases in stars, shedding light on the physics of

CCSNe explosions.
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