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EXTRACTING 3D GALAXY SHAPE FROM 2D IMAGE PROPERTIES USING RANDOM FORESTS
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ABSTRACT

Galaxies are 3D objects, but we only observe their 2D projection. Extracting observational constraints on 3D galaxy

shape is instrumental to aid our understanding of galaxy evolution. Here, we use a supervised machine learning

algorithm to probe the relation between the 3D galaxy shape and 2D summary statistics and hence attempt to

understand how much information about the 3D shape of a galaxy can be inferred from its 2D image characteristics.

Specifically, we use simulated data from the Illustris and IllustrisTNG simulations, and use Random Forests to classify

the 3D shape of galaxies. We find that while non-optimal, our algorithm is able to classify prolate vs. not-prolate

galaxies to a certain degree; we are working on optimizing the features to improve the efficiency of our classifier.

Furthermore, and perhaps more importantly, our algorithm provides a list of features that may be strong proxies for

the 3D shape – the distributions of which can be compared between simulations and observations, e.g., from Hyper-

Supreme Cam survey data. Also, as a by-product of our use of both Illustris and IllustrisTNG simulations, we find

important differences between the two simulations: the production of lower stellar mass halos in IllustrisTNG, and

comparable number of prolate vs. not-prolate galaxies in IllustrisTNG when compared to Illustris. Furthermore, we

investigate the impact of using different classification criteria to classify galaxies as prolates vs. not, and find that

they lead to rather different classifications – a point of caution when considering various results in literature.
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1. INTRODUCTION

Galaxies are intrinsically 3D objects, although we lose

the 3D shape information when we observe them as

projected 2D objects. 3D galaxy shape is of interest

to galaxy evolutionary studies, specifically for massive

galaxies, e.g., since simulations reveal a connection be-

tween the prolateness of dark matter halos and their

merger history (e.g., see Ceverino et al. 2015). There-

fore, the ability to infer the 3D shape of galaxies from 2D

summary data can help further our models for galaxy

evolution while allowing testing the physicality of the

simulations.

Figure 1 demonstrates the information lost between

2D projection of the 3D data and the consequent degen-

eracy in the 3D shape information: we see that not only

there is no 1-1 correlation between the 2D effective ra-

dius, a proxy for the shape, and 3D one, the correlation

depends strongly on the intrinsic 3D shape.

In order to infer the 3D shape of observed galaxies, one

can take two approaches: 1) constructing 3D models for

galaxies and using Bayesian inference to construct the

likelihood function, and 2) using machine learning to in-

fer the relationship between 3D shape and 2D summary

statistics. While the first method is powerful, it is cur-

rently limited to work with simple toy models that do

not encapsulate the variety and complexity of character-

istics observed in the real data (Jiang, F. et al, in prep).

In this work, we pursue the second approach, for which

we utilize high resolution simulations: Illustris and Illus-

trisTNG. Also, aside from attempting to predict the 3D

shape based on 2D summary statistics, we focus on iden-

tifying any key 2D features that may be strong proxies

for the 3D shape, with the goal of eventually comparing

simulations vs. observations from Hyper-Supreme Cam

(HSC) survey using the distribution of these features.

We describe our method in Section 2 with results pre-

sented in Section 3, followed by a discussion and con-

clusion in Section 4; all our code is hosted in a GitHub

repository1.

2. METHODOLOGY

2.1. Simulations and Data

To train and test our machine learning model, we

consider galaxies from Illustris-100 (Vogelsberger et al.

2014) and IllustrisTNG-100 (Nelson et al. 2018,?;

Naiman et al. 2018; Springel et al. 2018; Pillepich et al.

2018a,b) simulations at z = 0.4 with M∗ > 1011M�,

leading us to 449 Illustris galaxies and 295 IllustrisTNG

galaxies; the redshift is chosen to match the HSC obser-

1 https://github.com/humnaawan/3D-galaxies-kavli

Figure 1. Figure demonstrating the degeneracy between
the 2D and 3D effective radii – where effective radius of a
galaxy is defined as the radius at which half of the total light
of the system is emitted – a proxy for the 3D shape. Adapted
from Jiang, F. et al, in prep.

vations. We query the server2 to get cutout of all these

galaxies, keeping track of only the stellar particles to

calculate the axis ratios, as described in Section 2.3.

As for the 2D summary data, we consider the 2D pro-

jections of the 3D galaxies from three independent view-

ing angles, thereby increasing our sample size by 3×.

Then, using the method outlined in Huang et al. (2018),

we extract summary statistics using the 1D profiles (i.e.,

as a function of radius) for stellar mass (M∗), elliptic-

ity, and position angle; the method essentially fits an

isophote to each galaxy to extract 1D light profiles to

measure various quantities at specified radii. Further-

more, we consider second-order parameters calculated

by considering the higher order moments in the Fourier

expansion of the ellipse for each isophote (Kormendy

et al. 2009). Specifically, we consider profiles that in-

form us of the “boxiness” of the isophote as well as those

that encode the “asymmetry” or the effective error in

the isophote-fitting process. Note, however, that these

second-order parameter profiles are noisy; hence, we do

not include them in the basic set of summary statistics

for our training algorithm.

2.2. Features

For the basic set of features for our machine learn-

ing algorithm, we use the summary statistics de-

scribed above. Specifically, in order to take out

the dependency on the stellar mass M∗, we con-

2 http://www.tng-project.org/data/

https://github.com/humnaawan/3D-galaxies-kavli
http://www.tng-project.org/data/
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struct normalized stellar mass gradients, defined as

∆̄M∗
R1R2

= (M∗
R2

− M∗
R1

)/M∗
R2

, at specified radii

(R=10, 19, 27, 36, 50, 69, 94, 130 kpc); this gives us 7 stel-

lar mass gradients to work with. We also include ellip-

ticity values at 13 radii (R=10, 12, 15, 18, 22, 26, 31, 37,

45, 54, 64, 77, 93 kpc), and ellipticity and position angle

gradients at 11 radii (R=10, 15, 22, 26, 31, 37, 45, 54, 64,

77, 93, 111 kpc). Including the 2D axis ratio, then, we

have a total of 43 features. For further exploration,

we add mass (at two radii, R=10, 100 kpc, as well

as the true total stellar mass) to check the depen-

dency on the mass scale, as well as 4 second order

parameters for “boxiness” and “asymmetry” at 7 radii

(R=10, 12, 15, 18, 22, 26, 31, 37, 45, 54, 64, 77, 93, 111 kpc),

adding 28 features.

2.3. 3D Shape

2.4. Axis Ratio Calculation

Galaxies can most generally be modeled as ellipticals,

with axes a ≥ b ≥ c. In order to calculate the axis ra-

tios b/a, c/a for different galaxies, we adapt the code3

presented in Li et al. (2018) to work with the simu-

lated cutouts at z = 0.4 matching the HSC observations.

With the axis ratios at hand, we move on to the task of

shape classification; we discuss the choice of radius at

which to evaluate the shape in Section 3.1.

2.5. Shape Classification

While 3D shapes might be defined broadly, e.g., pro-

lates, oblates, triaxials, and sphericals, the classification

has to be quantified precisely in order to use numerical

methods to infer the 3D shape – a non-trivial tasks since

classification criteria vary widely. For instance, Li et al.

(2018) consider galaxies to be prolates if b/a − c/a <

0.2, b/a < 0.8, oblates if b/a− c/a > 0.2, b/a > 0.8, tri-

axials if b/a − c/a > 0.2, b/a < 0.8, while the rest are

considered spherical.

On the other hand, Jiang et al. (2019) define the four

classes using thresholds on flattening (≡
√

1 − (c/b)2)

and elongation (≡
√

1 − (b/a)2): prolates are galaxies

with flattening < 0.5 and elongation < 0.5, oblates with

flattening ≥ 0.5 and elongation ≤ 0.5, triaxials with

flattening ≥ 0.5 and elongation ≥ 0.5, while the rest are

considered spherical.

For a simpler criteria, we consider a cut on the triaxial-

ity parameter, defined as T =
(
1 − (b/a)2

)
/
(
1 − (c/a)2

)
.

We define prolates as galaxies with T > 0.7 and the rest

as not-prolates, motivated by e.g., Kimm & Yi 2007.

3 https://github.com/HongyuLi2016/illustris-tools

2.6. Machine Learning Algorithm

As alluded to earlier, we make use of the Random

Forests for our purposes, specifically since it allows us

(an easy) access to feature importance that might in-

dicate proxy features for the 3D shape. Specifically, we

use the RandomForestRegressor available via sci-kit,

with one-hot encoding to allow for 2+ way classification

as well as regression. For simplicity however, we consider

only a 2-way classification: prolates (P) vs. not-prolates

(Not-P). We then optimize the hyperparameters using

RandomizedSearchCV with 5-fold cross validation. Since

we are working with imbalanced classes, we test the

effectiveness of our classifier using the precision-recall

curve, alongside the confusion matrices. Also, we re-run

our classification with top-15 features selected from by

the algorithm, allowing us to probe the validity of the

importance of the features deemed important.

As for the data on which to train and test our al-

gorithm, we consider Illustris and IllustrisTNG simula-

tions separately since the underlying physical is some-

what different between the two; this allows us to probe

the relation between 3D shape and 2D summary data in

different spaces. For each, we use a 30-70% random split

for test-train (although we find no strong dependence of

our results on the split ratio).

3. RESULTS

3.1. 3D Shape Dependence on Radius

In order to decide the radius based on which to clas-

sify galaxy shapes, we plot the profiles of change in the

axis ratios and the triaxiality parameter; this is shown

in Figure 2, with triaxiality-based shape classification.

We see that while the axis ratios and the triaxiality pa-

rameter change for small radii, the changes are small for

larger radii, indicating that the shape “settles” at the

larger radii. Therefore, for our analysis from here on,

we classify galaxies based on the shape parameters (axis

ratios or triaxiality) at R = 50 kpc.

3.2. 3D Shape Classification Criteria: Comparisons

In order to get an intuition into the classification

methods, we plot the distribution of the axis ratios b/a,

c/a as well as the the triaxiality parameter T for our

galaxy samples. Figure 3 shows the distributions for

the galaxies in our Illustris sample while Figure 4 shows

the same for our IllustrisTNG galaxies. We see that not

only do the three classification criteria lead to classi-

fying different galaxies as different shapes, there is no

intrinsic separation between the shape classes, at least

not in the three distributions shown. We also note that

overall distributions of the three parameters are similar

between Illustris and IllustrisTNG samples.

https://github.com/HongyuLi2016/illustris-tools
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
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Figure 2. Difference in axis ratios and the triaxiality parameter as a function of radius for Illustris (left) and IllustrisTNG
(right) samples, with triaxiality-based shapes. We note that all parameters settle at large (R & 50 kpc) radii.

Figure 3. Distribution of axis ratios and the triaxiality parameter for Illustris galaxies, with shapes based on Li et al. (2018)’s
criteria (left), Jiang et al. (2019)’s criteria (middle), and the triaxiality-based criteria (right). We see that there is no intrinsic
separation between the three parameters for the various shape classes, and that the three classification criteria lead to rather
different shape classifications.

We also compare the three classification criteria in the

space of the two axis ratios. Figure 5 shows the axis

ratios for the galaxies in our Illustris sample while Fig-

ure 6 shows them for IllustrisTNG. Comparing the pan-

els within each figure, we see that while the three classi-

fication criteria largely show similar trends, they lead to

different classifications. On the other hand, comparing

the two figures, we see that the two simulations lead to

similar trends except that IllustrisTNG leads to more

prolates than Illustris.

As mentioned in Section 2.6, we proceed with just

two classes: prolates (P) vs. not-prolate (Not-P), and

consider only the Li et al. (2018)’s criteria and the

triaxiality-based criteria. We check the number counts

for P vs. Not-P galaxies in our train vs. test cases

and find that Li et al. (2018)’s criteria leads to simi-

lar ratios for P vs. Not-P in Illustris and IllustrisTNG:

for Illustris, we have a 93-7 split for training and 94-

6 for test, while for IllustrisTNG, we have a 90-9 split

for training and 92-8 for test. On the other hand, the

triaxiality-based criteria leads to a 79-21 split for train-
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Figure 4. Distribution of axis ratios and the triaxiality parameter for IllustrisTNG galaxies, with shapes based on Li et al.
(2018)’s criteria (left), Jiang et al. (2019)’s criteria (middle), and the triaxiality-based criteria (right). As in Figure 3, we see
that there is no intrinsic separation between the three parameters for the various shape classes, and that the three classification
criteria lead to rather different shape classifications.

ing and 81-17 split for test for the Illustris sample, and a

62-38 split for training and 66-34 split for test for the Il-

lustrisTNG sample. These numbers are important since

1) they ensure that train and test sets are consistent for

both simulations, and 2) they demonstrate that the two

criteria lead to different degree of imbalance between the

two classes.

3.3. Prolate and Not-Prolate Fractions: Comparisons

As a further check, and to gain understanding between

the two simulations, we plot the prolate fraction for the

Illustris and IllustrisTNG samples, especially to com-

pare against Figure 3 in Li et al. (2018) which shows

the apparent trend for Illustris galaxies at z = 0 that

prolate fraction increases for higher stellar mass. Fig-

ure 7 shows the prolate fraction as a function of stellar
mass alongside the number count of P galaxies vs. Not-P

for Illustris and IllustrisTNG. We note a few important

trends: we see a larger prolate fraction at higher masses

for Illustris sample, in agreement with Li et al. (2018),

while the same is not true for IllustrisTNG – a reassuring

result since more prolates are expected at lower stellar

mass in IllustrisTNG as major mergers are a dominant

source of accretion in IllustrisTNG leading haloes to be

more prolate (Tacchella et al. 2019). On the other hand,

we note that the prolate fraction and its trends should

be considered with caution given the low number count

of galaxies, let alone that of prolates, at higher stellar

masses. Nevertheless, we note the production of more

prolates at lower stellar masses in IllustrisTNG as an

importance divergence from Illustris; one that would es-

pecially have an impact on classification if overall mass

is included as a feature in our training set. We compare

the analog of Figure 7 from the other two classification

criteria and find similar results.

3.4. 3D Shape and Summary Profiles

To check the dependence of the mass and elliptic-

ity on the 3D shape, we plot the profiles for galax-

ies at a fixed stellar masses (specifically those with

11.3 ≤ log10(M∗
∼30/M�) ≤ 11.5) for one of the three

projections. These are shown in Figure 8 for Illustris

galaxies and in Figure 9 for the IllustrisTNG galax-

ies. We see that while the mass profiles are comparable

between the two simulations, we observe more prolate

galaxies with higher ellipticity values in IllustrisTNG

than in Illustris. These plots are instructive as they can

be directly compared with observations.

3.5. 3D Shape Classification: Results

Figure 10 shows the confusion matrices for the Illustris

galaxies when training/testing with shape classification

based on triaxiality. We see with Not-P (not-prolate)

are classified more effectively while P (prolates) are not,

while the results do not change significantly when we re-

run our analysis with top-15 features, as selected by the

Random Forest algorithm. Similarly, Figure 11 shows

the analog figures for the IllustrisTNG galaxies, where

we find that while Not-P galaxies are still classified more

effectively than prolates, the discrepancy is not as strong

for the Illustris sample. Also, similar to Illustris galax-

ies, the results do not change significantly when we re-

run our analysis with top-15 features. Comparing Fig-

ures 10 and 11, however, we note the diverging trends

between the two simulations, arising due to two pos-

sible reasons: 1) larger sample size available for Illus-

tris leading to stronger results (better classification for
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Figure 5. Axis ratios for Illustris galaxies, with shapes
based on Li et al. (2018)’s criteria (top), Jiang et al. (2019)’s
criteria (middle), and triaxiality (bottom). We see that the
three criteria lead to different classification for the galaxies.

Not-P and more misclassification for P), and 2) the dif-

ferent underlying physics in the two simulations, leading

to different characteristics of prolate galaxies.

As a more probing measure of the effectiveness of our

classifier, we consider the precision-recall curve shown in

Figures 12-13 for Illustris and IllustrisTNG galaxies re-

spectively. Broadly, we note that our classifier does not

perform significantly well (as it is far from the ideal of

high precision, especially at high recall values), hinting

at the strong degeneracy of the information available via

the selected features. As before, we see that the perfor-

Figure 6. Axis ratios for IllustrisTNG galaxies, with shapes
based on Li et al. (2018)’s criteria (top), Jiang et al. (2019)’s
criteria (middle), and triaxiality (bottom). We see that the
three criteria lead to different classification for the galaxies.

mance is better for not-prolates than prolates, with Illus-

tris sample leading to better results, and the results be-

ing consistent when considering all 43 features vs. top-

15 ones. We note, however, that the optimization of the

algorithm leads to the jaggedness of the curve, without

delivering significant gain in the overall precision-recall

trend.

If we include mass as a feature, we find that the

precision-recall results improve modestly for both Illus-

tris and IllustrisTNG galaxies. Similarly, adding the
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Figure 7. Prolate fraction and galaxy counts as a function of stellar mass for Illustris (left) and IllustrisTNG (right) galaxies,
with shapes based on Li et al. (2018)’s criteria. Comparing these with Figure 3 in Li et al. (2018), we see that while we recover
the trend of larger prolate fraction for higher stellar mass for the Illustris sample, the number counts are not high enough to rule
out effects of Poisson noise. Also, we do not see the trend for the IllustrisTNG sample, illustrating a difference in the underlying
physics between the two simulations.

Figure 8. Mass (top) and ellipticity (bottom) profiles
for one of the three projections for Illustris galaxies with
11.3 ≤ log10(M∗

∼30/M�) ≤ 11.5, with shapes based on the
triaxiality-based criteria.

second order parameters, described in Section 2.1, helps

similarly for both Illustris and IllustrisTNG galaxies.

As for results for shapes using Jiang et al. (2019)’s

criteria, our model performs well for not-prolates but

terribly for prolates. We are investigating the reasons

to explain the trends.

Figure 9. Mass (top) and ellipticity (bottom) profiles for
one of the three projections for IllustrisTNG galaxies with
11.3 ≤ log10(M∗

∼30/M�) ≤ 11.5, with shapes based on the
triaxiality-based criteria.

3.6. Important Features for 3D Shape

As mentioned before, one of our goals is to identify 2D

features that may be strong proxies for the 3D shape.

Our choice of machine learning algorithm helps with

identifying these features as the Random Forest algo-

rithm produces feature importance - a metric encapsu-

lating how helpful a given input feature is for identify-

ing the target. Using the output features importance,
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Figure 10. Confusion matrices for Illustris galaxies with triaxiality-based shapes, when trained with all 43 features (left) and
when trained with top-15 only (right). We see that our classifier is more effective for Not-P galaxies than for P ones, while the
results are robust to features that are deemed important by the classifier.

Figure 11. Confusion matrices for IllustrisTNG galaxies with triaxiality-based shapes, when trained with all 43 features (left)
and when trained with top-15 only (right). We see that our classifier is more effective for Not-P galaxies than for P ones, while
the results are robust to features that are deemed important by the classifier.

we find that the normalized mass gradients have strong

impacts, although, as can be inferred from some of the

results discussed in Section 3.5, no feature is incredi-

bly important: while the importance can range form

0-1, the maximum importance we see is 0.1. Neverthe-

less, it is instructive to consider the features that are

ranked higher than the others. For Illustris, the top five

features are normalized mass gradients for (Rin, Rout)

= (94, 130), (69, 94), (19, 27), (50, 69), (10, 19) kpc in the

order of decreasing importance, while for IllustrisTNG

galaxies, the top five features are four normalized mass

gradients for (Rin, Rout) = (10, 19), (69, 94), (94, 130),

(36, 50) kpc and the ellipticity gradient at (Rin, Rout)

= (31, 37) kpc.

As an example, Figure 14 shows the distribution of

the normalized mass gradient at (Rin, Rout) = (69, 94)

kpc since it is ranked important for both galaxy sam-

ples. We see that while the underlying distribution of

the prolate vs. not-prolates galaxies for the features is

different, distinguishing them completely is rather chal-

lenging.
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Figure 12. Precision-recall curves for Illustris galaxies with triaxiality-based shapes, when trained with all 43 features (left)
and when trained with top-15 only (right). We see that while our classifier is not optimal, it is more effective for Not-P galaxies
than for P ones; the results are robust to features that are deemed important by the classifier.

Figure 13. Precision-recall curves for IllustrisTNG galaxies with triaxiality-based shapes, when trained with all 43 features
(left) and when trained with top-15 only (right). We see that while our classifier is not optimal, it is more effective for Not-P

galaxies than for P ones; the results are robust to features that are deemed important by the classifier.

4. DISCUSSION AND CONCLUSIONS

In this work, we have attempted to use machine learn-

ing for 3D shape classification of galaxies. For this pur-

pose, we have used the simulated galaxies from Illustris

and IllustrisTNG for training/testing with Random For-

est machine learning algorithm. We find that while our

classifier is not optimal, it is able to learn important in-

formation from summary statistics of the 2D projections

of the 3D galaxies, and is able classify galaxies correctly

to a limited extent, alongside identifying features that

may be strong proxies for the 3D galaxy shape.

There are various avenues for optimizing our super-

vised learning model to achieve better results. These

include characterising the various features in a better

way, e.g., instead of using arbitrary radii to sample the

profiles of various statistics (e.g., mass, ellipticity, etc.),

we could characterize them more effectively by consid-

ering the slope and intercept of the profiles in coarse,

well-defined bins that are the same across the various

statistics. Furthermore, we can include isophotal twist-

ing and the concentration as features, as they are mea-

surable quantities that may provide important infor-

mation, alongside considering other proxies for the 3D

shape (e.g., Shankar & Khatri 2019). Optimizing the

features may allow us to optimize our algorithm to clas-

sify 3D galaxy shape effectively. Note that even if our

algorithm is unable to classify shapes perfectly, iden-

tifying important features is very much an achievable

deliverable.

Furthermore, we can extend our method to include

the merger history as a feature, and probe the relation

between mergers and 3D shape seen in the simulations

(Li et al. 2018), i.e., galaxies with more mergers tend

to be prolate. Another avenue for development is to

check if our results can provide priors for the Bayesian

inference to infer 3D shapes of observed galaxies.
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