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Abstract

The large-scale structure of the universe has an intricate graph structure. Although, the explicit network extracted from the galaxy
distribution does not entirely reflect the cosmic web. One way to overcome this issue is to apply a method that transforms the
discrete data from galaxies in a continuous density field. Physarum Polycephalum is a slime mold which typically finds the
most efficient path between food locations over large areas. We employ Physarum Machines in galaxy distributions to obtain
the density field, and, with this density field, we extract the graph of the large-scale structure. Graph is a simple and powerful
structure which consists of vertices connected by edges. Two different groups of graph algorithms are hypergraph and community
detection. Hypergraph algorithms cluster edges while community detection cluster vertices. By extracting the large-scale graph and
applying these algorithms, we ultimately aim to (1) extract new relationships about abstract parameter space — another dimension
for studying galaxy interactions; (2) employ hypergraph algorithms to produce filaments catalog; (3) apply community detection
algorithms to detect galaxy clusters; (4) combine hypergraph and community detection to obtain a meta-graph with the rough
large-structure. We plan to provide a filaments catalog as a main result of this work.
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1. Introduction

Large galaxy redshift surveys display a heterogeneous dis-
crete distribution, which has a structure with two main compo-
nents: galaxy filaments and voids. Galaxy filaments are large
thread-like formations with gravitationally bound galaxies and
gases that establish boundaries between large voids in the uni-
verse. Such structure of the large-scale structure of the universe
is also known as cosmic web, because of its web-like appear-
ance (Jõeveer et al., 1978; Bond et al., 1996). This salient struc-
ture is visually evident, however, it is quite challenging to define
a mathematical structure from it. We appeal to graph theory to
extract and study this network.

Graphs are mathematical structures used to model different
types of relationships and processes. The basic structure of
a graph is made up vertices which are connected by edges
(Hazewinkel, 2013). Several algorithms can be employed to
study and extract knowledge from the graph topology. One
of them consists of obtaining a hypergraph from the original
graph. A hypergraph is a generalization of a graph in which
an edge can join any number of vertices. Edges are clustered
by their similarity in the parameter space of the graph (Bretto,
2013). Another category of graph algorithms is community de-
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tection: a community is commonly defined as vertices which
are densely connected with each other (Fortunato, 2010).

By extracting a graph from galaxy distributions only, the
structure revealed does not seem natural, and also does not re-
veal the same appearance as we see in well-established simula-
tions as (Illustris, Vogelsberger et al., 2014; Genel et al., 2014;
Nelson et al., 2015) and (EAGLE, Schaye et al., 2014). One
way to overcome this issue is to apply a bio-inspired method
upon the discrete distribution of galaxies to obtain a more nat-
ural continuous density field of the universe.

Physarum Polycephalum (Physarum hereafter) is a slime
mold, an unicellular protist that inhabits shady, cool and moist
areas. Biological experiments have demonstrated Physarum’s
extraordinary intelligence to find the most efficient path among
food locations over large areas and thus build efficient networks
(Nakagaki et al., 2000; Oettmeier et al., 2017). Naturally, com-
puter science researchers have been developing swarm intel-
ligence algorithms to simulate Physarum’s behaviour — also
known as Physarum Machines (Sun, 2017). Burchett et al.; Elek
et al. have been working on a 3D Physarum Machine adaptation
for the large-scale structure of the universe.

This work employs the filament density map (extracted from
galaxy halos given by the Sloan Digital Sky Survey, SDSS) by
Burchett et al.; Elek et al. using a custom 3D adaptation of the
Physarum Machine model. Using the Physarum density to de-
fine a spatial throughput, we build the basic architecture of the
graph (vertices and edges). With this base graph, we plan to (1)

Preprint submitted to Elsevier September 15, 2019



Figure 1: Snapshot of the Physarum fit in 3D (in white) on SDSS galaxies (in red) used to extract the graph.

extract new relationships about abstract parameter space – an-
other dimension for studying galaxy interactions; (2) employ
hypergraph algorithms to generate filaments catalog; (3) ap-
ply community detection algorithms to detect galaxy clusters;
(4) combine hypergraph and community detection to obtain a
meta-graph with the rough large-structure. We will provide a
filaments catalog as a final product of this work.

This document is organized as follows: in Section 2, we
briefly describe Physarum Machines; in Section 3, we explain
how we extract the base graph the Physarum throughput; and,
in Section 5, we summarize what we have achieved so far and
future plans.

2. Physarum machines for large-scale structure finding

The many-headed slime mold (Physarum Polycephalum) is
an unicellular protist, although it can be seen without micro-
scope. Because of its efficiency to find the best path among
food locations (its body morphology approximates an optimal
transport network constrained by the available nutrient distribu-
tion), one of the aims of research with regard to Physarum is to
understand and model mechanisms of information processing
coupled to network topology and morphology. The intelligent
behaviour showed to build such optimized networks have been
exploited to solve different network problems (Nakagaki et al.,
2000; Oettmeier et al., 2017) and have been inspiring swarm
intelligence and cellular automata algorithms to simulate the
Physarum behaviour as well (Sun, 2017). Jones (2010) presents
a well-established 2D implementation of a Physarum Machine.

Basically, each Physarum particle has defined a location
(x, y), a movement direction a sensor direction and a sensor

distance. The food sources emit signals which can be sensed
by the particles, and the particles steer to reach the food loca-
tions. The particles leave a deposit while moving, which can
diffuse to its neighbors in the 2D grid, and then decay, if such
path is not used frequently by all slime particles. We use the 3D
Physarum Machine implementation from Burchett et al.; Elek
et al. for obtaining the most visually accurate fit of the Cosmic
Web using SDSS galaxies as food locations (see Figure 1). We
release a swarm counting millions of slime mold agents into the
same 3D space which “food data” (galaxy halo locations, in this
work) is defined in. These data emit a signal that can be sensed
by slime mold cells which will then find efficient paths between
food locations (see Burchett et al.; Elek et al., for more details).

3. Translating Physarum density field to graph: semantics

Physarum Machines simulate the behavior of a large number
of Physarum Polycephalum cells, which leave a trace of their
path constituting a continuous density field in the defined space
of the problem. We interpret the discrete output of the algorithm
as the throughput set of the snapshot that builds up such density
field.

We obtain a density field from the Cosmic Web by applying
Physarum Machines on a three-dimensional space which also
has a discrete distribution of galaxies. How to obtain a math-
ematical structure from the density field created by Physarum?
Among different possibilities, we use a graph to define such
structure. The idea is to map density points and/or regions
as vertices and their relationships as edges. Given a success-
fully graph extraction that maps the filamentary structure of the
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large-scale structure, we can perform topology studies and ap-
ply a variety of graph algorithms. Here, we focus on commu-
nity detection and hypergraph, which we explain in the follow-
ing subsection.

3.1. Communities and hypergraph

Graphs representing natural systems are often complex net-
works with order coexisting with disorder. Within such struc-
tures, generally there is an underlying community structure.
Community detection is currently one of the most popular types
of graph algorithms (Fortunato, 2010). Among all available
methodologies to detect communities, this work focuses on
the hierarchical optimization of modularity by Blondel et al.
(2008), where vertices are assigned to clusters iterativelly,
which results in a hierarchical representation of the vertices in
the graph (see Blondel et al., 2008, for further details). By de-
tecting communities and translating the coordinates back to real
data, we aim to study galaxies relationships within such com-
munities, and, possibly detect galaxy clusters and/or galactic
halos as well.

A hypergraph is a graph where the edges can connect any
number of vertices — these are called hyperedges (Bretto,
2013). While community detection algorithms cluster vertices,
hypergraphs create hyperedges by clustering edges from the
base graph. With hypergraphs, we can study if the hyperedges
found in this work are related to filaments in the large-scale
structure.

4. Extracting the graph from Physarum density field

The data used from the Physarum Machine fit contains 3D
coordinates (x, y, z) and throughput values. This constitutes a
data cube with dimensions 360 × 360 × 360 and more than 17
million non-zero values. We normalize the throughput values
and we constrain the dataset to have throughput ≥ 0.9 to obtain
a reduced dataset. Figure 2 presents the current methodology
for this work. We explain each of the steps in the following
subsections. The code for this project is available at: https://
github.com/paulobarchi/SlimeGraphExtraction (work
in progress).

4.1. Using KDTree for storing distances

One of the major challenges is to calculate the thoughput
distances along the data cube to decide whether or not to as-
sign a edge between them. We apply KDTree to efficiently ob-
tain and store the distances from the data cube. KDTree is a
space-partitioning data structure which organizes points in a k-
dimensional space (k = 3 in this case) (Bentley, 1975; Berg,
de et al., 2008). This step uses the whole dataset (without
downsampling) because we will need the distances among all
throughput values to assign weights for the edges further up.

4.2. Partitioning, downsampling and creating vertices

A well defined fit of Physarum Machines for the large-scale
structure requires millions of cells. Ideally, we would build an

initial base graph where every data point is a vertex, then ap-
ply graph algorithms upon it. However, as we consider 3D
positions and throughput values as vertex properties, and the
distance among them to define edges, it is not computationally
feasible to build up the initial graph with the whole dataset.
First we split the data cube in nsb sub-cubes. For the first exper-
iments, we empirically define nsb = 27 since we significantly
reduce the computational cost and preserve meaningful struc-
tures in smaller scales. We uniformly downsample the dataset
(from ≈ 107 to ≈ 105 points) and generate the initial graph with
the resulting sample as vertices.

4.3. Defining edges and their weights

A graph without edges has no information about the rela-
tionship between vertices. We define the edges based on the
distance among the vertices. We explore different values as the
maximum distance threshold (m) to define edges and set m = 1
for preliminary graphs. Initially, the weight of each edge is de-
fined by the distance between the vertices. In the next step, we
query the KDTree to extract all the original throughput values in
the path of each edge. We empirically define that the through-
put is in the path if the distance from it to the edge is less than
or equal 0.3. Given this defined throughput path, we integrate
all these values to assign the weight of the edges. At this point,
we have a graph with defined vertices, edges and weights.

4.4. Preliminary Graphs

In this subsection, we present the preliminary graphs and
communities obtained in experiments performed during the
Kavli Summer School in Astrophysics 2019: Machine Learning
in the era of large astronomical surveys. We explored differ-
ent number of sub-cubes (nsc) in the partition steps and report
here experiments with nsc = 27. These experiments does not
involve downsampling neither integration of throughput path,
since we are currently implementing these steps in the current
system. Central sub-cubes have a highly dense structure, while
the corners of the data cube are basically empty.

Figure 3 presents sub-cubes and their graphs shifting along
the original data cube. Shifting is applied in all three axes. Fig-
ures 3a, 3b, and 3c are shifted by 10, 12, and 14 units, respec-
tively. Each of these figures shows the density field with all
the throughput values in the left column, the graph extracted in
the middle column, and the resulting graph from the commu-
nity detection algorithm in the right column. For the first two
columns, the rows just present different angles for better visual-
ization. With lower shifts — closer to the center — more com-
plex and denser structures are shown, as expected. With higher
shifts, simpler graphs are extracted as sparsity takes over.

5. Summary

This document describes the first steps towards the extraction
of graph structures from 3D Physarum Machine applied on the
large-scale structure of the universe. We summarize this work
as follows:
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Figure 2: Illustrative sketch of the methodology for the graph extraction from the Physarum fit.

• Physarum Machines can efficiently find paths among a dis-
crete galaxy distribution in a defined space and produce a
density field (Cosmic Web).

• We propose and implement a methodology to extract
graphs from density fields.

• Preliminary results obtained during the Kavli Summer
School in Astrophysics 2019: Machine Learning in the era
of large astronomical surveys are shown in Subsection 4.4.

We also highlight work in progress topics and next steps in
the following items:

• We are currently developing the method to integrate the
throughput between two vertices to assign the definitive
edge weight.

• By applying hypergraph algorithms, we ultimately aim to
provide a filaments catalog.

• We aim to compare our filaments catalog with the catalog
provided by Tempel et al. (2014).

• We aim to explore communities in the graph with different
community detection algorithms and analyse if they trans-
late to either galaxy clusters, galactic halos or other galaxy
interactions.

• The Physarum fit reveals hidden channels that are not
present in galaxy distributions only. By studying the graph
topology, we can analyse galaxy interactions in an abstract
parameter space that was not available before.
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Figure 3: Plots of density fields (first column), graphs (middle column) and community graphs (third column) extracted along the original data cube. Different rows
present the same content from a different angle. See the explanation in 4.4 for further explanation.
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