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ABSTRACT
Comparison of mergers with non-merging galaxies while controlling for environment, gas
fractions, and total stellar mass have highlighted the critical roll of mergers in triggering
key processes in galaxy formation and evolution. However, different merger scenarios (e.g.
orbital histories and virial accretion times) yield a corresponding range in the enhancement
(e.g. star-formation, AGN activity) or suppression (e.g. central gas metallicity) of merger-
triggered phenomena. Given that the initial merger scenarios are encoded in the morphologies
of stellar debris found around merger remnants (shells/streams), these features can be used to
further separate merger samples and make more detailed comparisons between observations
and numerical predictions. In this paper, we use convolutional neural networks (CNNs) to
first identify stream and shell features in galaxies from the Subaru Hyper Suprime-Cam
Subaru Strategic Program (HSC-SSP). The CNNs are trained using an unprecedentedly large
stream/shell search catalogue containing 1,201 galaxieswith stream and shell feature detections
(with 987 streams, 214 shells, and a handful with both labels) and 20,010 non-detections.
Using i-band imaging alone, we achieve test accuracies and F1 statistics which are consistent
with those reported by other works using smaller samples (TPR or recall 80%, FPR or
contamination 26%). We find that one possible limitation to the performance of the CNNs
(and the source of overfitting) is the large number of misclassified images in the base catalogue.
Many of the images classified as detections by our CNNswhich are non-detections according to
the catalogue (false positives) exhibit strong stream and shell features. Applying a CNN which
detects and distinguishes between stream and shell features to the full HSC-SSP imaging
campaign will require careful consideration of misclassification and possible redshift and
resolution biases.
Key words: keyword1 – keyword2 – keyword3

1 INTRODUCTION

Galaxy mergers have a fundamental and critical role within the
Lambda cold dark matter (ΛCDM) concordance cosmogony (e.g.
White & Rees 1978; White & Frenk 1991). In this paradigm, large
structures are assembled through continuous and diverse merging
events between smaller structures (e.g. Lacey & Cole 1993).

? E-mail: cbottrel@uvic.ca

The role of galaxymergers is not limited to the ex-situ assembly
of stellar mass in galaxies. The last five decades of theoretical, ob-
servational and numerical investigations demonstrates that gas-rich
mergers are also responsible for in-situ growth. This in-situ growth
is facilitated through central starbursts triggered by the tidal torques
and shocks involved in galaxy interactions (e.g. Toomre & Toomre
1972;Hernquist 1989;Barnes&Hernquist 1991; Ellison et al. 2008;
Patton et al. 2013; Blumenthal & Barnes 2018). Mergers garner in-
terest from both observational and theoretical perspectives because
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they are laboratories in which many of the poorly-constrained as-
pects of galaxy formation theory can be studied. The star formation
triggered in gas-rich mergers simultaneously drives outflows and
regulates further star formation by injecting energy and turbulence
into the interstellar medium (ISM, e.g. Hayward & Hopkins 2017;
Moreno et al. 2019). The circum-galactic medium (CGM) is en-
riched by such outflows – with observable signatures in its size and
covering fractions for various gas-phase species (Hani et al. 2018).
The same gas inflows that can boost central star-formation can also
be accreted onto the central super-massive black hole (SMBH) and
trigger an active galactic nucleus (AGN) (e.g. Keel et al. 1985; Hern-
quist 1989;Koss et al. 2010; Satyapal et al. 2014; Ellison et al. 2019).
These particularmerger-induced processes have galactic-scale con-
sequences but originate from spatial scales which cannot be simul-
taneously and explicitly modelled with numerical hydrodynamical
simulations. Consequently, sub-grid recipes must be adopted. Well-
motivated observational constraints on these processes are therefore
of great interest because they enable validation or rejection of those
specific aspects of the models.

However, to compare between observations and numerical pre-
dictions, one must be able to distinguish between different merger
scenarios or histories. Numerical simulations demonstrate that the
enhancement in star-formation,AGNaccretion, and subsequent cold
gas depletion are sensitive to the initial orbits of mergers at fixed
mass ratios and gas fractions (e.g. Cox et al. 2008). Intuitively,
mergers with small impact parameters (low eccentricities) generate
the largest responses. Mergers with more eccentric orbits have sup-
pressed responses with respect to low-eccentricity orbits. If these
initial orbital conditions can be estimated for observedmergers, then
the merger-induced responses seen in the observations and numeri-
cal simulations can be compared without suppressing the responses
in each dataset by statistically averaging over all merger scenarios.

Fortunately, the orbital scenarios are encoded in the morpho-
logical features produced in galaxy interactions. The seminal analy-
sis demonstrating this encoding is Johnston et al. (2008, in particu-
lar, see their Figure 3) building on previous analytic and numerical
works (e.g. Hernquist & Quinn 1989; Helmi &White 1999) . John-
ston et al. (2008) showed that one can interpret the initial orbital
conditions of amerger using themorphological features in the stellar
haloes of merging galaxies. Mergers between galaxies with high-
eccentricity orbits tend to produce stellar streams (as long as the
initial orbital energy has had sufficient time to decay through dy-
namical friction). In contrast, mergers along low-eccentricity (more
radial) orbits tend to produce shells as the companion passes through
amuch deeper potential and is consequentlymore heavily disrupted.
These findings have enormous implications for the task of estimating
the initial orbital histories of mergers. Additionally, using methods
which forward-model galaxies from hydrodynamical simulations
into realistic synthetic observations (e.g. SKIRT, Baes et al. 2011;
Camps & Baes 2015; RealSim, Bottrell et al. 2017, Bottrell et al.
2019 (submitted)), one can (1) calibrate a method which identi-
fies and distinguishes between streams and shells where the merger
initial conditions are known and (2) analyze both mock-observed
simulations and observed data with the same methodology. But
first, the limitations (if any) of generating a model which identifies
streams and shells in galaxies based strictly on observational data
should be known.

A remaining challenge to stream and shell detection is their
detectability within survey surface brightness and resolution limi-
tations. Streams and shells are often low surface brightness features
and are consequently the first features to be lost as image quality
degrades or galaxy redshift increases (e.g. Lotz et al. 2008, 2010).

Therefore, a deep survey with sufficient sky coverage that statis-
tically large samples of stream and shell hosts is required. In an
effort to satisfy both of these criteria, we use imaging from the
Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). The
HSC-SSP is an ongoing wide-field survey being carried out with
the 8.2m Subaru Telescope (Miyazaki et al. 2012; Furusawa et al.
2018; Komiyama et al. 2018; Kawanomoto et al. 2018; Miyazaki
et al. 2018). Once completed, the HSC-SSPwill have a sky coverage
of 1400 deg2 in five broadband filters which span the optical and
near-infrared (grizy). The HSC-SSP has a target 5σ point source
depth of 26 in the HSC i-band and a median i-band seeing of 0.56
arcseconds (Aihara et al. 2018a,b). The HSC-SSP thus has a po-
tential for producing statistical samples of low surface=brightness
features that can be further characterized quantitatively (for exam-
ple, using the methods presented in Hendel & Johnston 2015).

Presently, observational stream and shell detection is domi-
nated by visual classification (e.g. Malin & Carter 1983; Tal et al.
2009; Nair & Abraham 2010; Atkinson et al. 2013; Hood et al.
2018; Morales et al. 2018). Given the sensitivity of tidal feature
detection to photometric limitations, these studies are by no means
homogeneous and exhibit variability in (1) the incidence of stream
and shell features in galaxies which are shared by multiple stud-
ies and consequently (2) the fractional incidence of galaxies which
exhibit tidal features reported by these studies. A large and homo-
geneous sample of expertly classified galaxies is therefore desired
(and one that satisfies the photometric requirements from the last
paragraph). However, this endeavour is limited by the rate at which
expert visual classifications can be performed. Efforts that com-
bine visual classifications with the flexibility and speed of deep
learning models offer a solution to this problem (e.g. Ackermann
et al. 2018; Walmsley et al. 2019). In particular, convolutional neu-
ral networks (CNNs) are a class of deep learning models which
have proven useful for morphological identification/classification
tasks (e.g. Huertas-Company et al. 2015; Domínguez Sánchez et al.
2018; Huertas-Company et al. 2019). For a homogeneous survey,
a sufficiently representative subsample of galaxy images can be
used to train a CNN. The trained CNN can then rapidly classify
galaxies in the rest of the survey at a rate that is unachievable with
human classifiers. The speed with which galaxies can be classified
with CNNs is also necessary given the size of modern observing
programs like the HSC-SSP.

In this paper, we aim to improve detection and characterization
of stream and shell features by training CNNs on deep HSC-SSP
imaging. We use the Kado-Fong et al. (2018) visual classification
sample for our training and validation images. Kado-Fong et al.
(2018) performed their visual classifications with 512 × 512 pixel
cutouts (87× 87 arcsec2) using all grizy bands, centred on galaxies
in the overlap between Data Release (DR) 1 of the HSC-SSP Wide
layer (Aihara et al. 2018b) and the Sloan Digital Sky Survey DR12
spectroscopic galaxy sample (Alam et al. 2015). These selection
criteria yield a total of 21,208 galaxies making the Kado-Fong
et al. (2018) catalogue the largest available tidal structure search
catalogue and an excellent candidate for training CNNs. To aid their
visual classifications, Kado-Fong et al. (2018) perform a wavelet
decomposition on their images – which is designed to identify high
spatial frequency features. For each galaxy, Kado-Fong et al. (2018)
then use the five original grizy images (where available) and five
images which enhance high spatial frequency components tomake a
final visual classification: (1) stream, (2) shell, or (3) non-detection.
A handful of galaxies carry both the stream and shell labels. We
use these visually classified galaxy images from the HSC-SSP DR1
to train CNNs with the following goals: (a) identify stream and
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shell features in the HSC-SSP images; (b) characterize the detected
features as streams or shells; and (c) apply our trained CNNs to the
whole of the HSC-SSP Wide layer DR2 (Aihara et al. 2019).

2 DATA &METHODS

2.1 The Hyper Suprime-Cam Subaru Strategic Program

The HSC-SSP is a wide-field optical imaging survey on the 8.2m
Subaru Telescope. The salient information about the instrumen-
tation and survey planning can be found in a series of dedicated
papers: Miyazaki et al. (2012); Furusawa et al. (2018); Komiyama
et al. (2018); Kawanomoto et al. (2018); Miyazaki et al. (2018).
We use the co-add images from the Wide layer DR2 (Aihara et al.
2019) which combines 170 nights of observations since January,
2018 and covers 300 deg2 in all five HSC broadband filters (grizy)
using the hscPipe software (Bosch et al. 2018). hscPipe performs
source detection and sky-subtraction.

2.2 Galaxy image sample

We use a catalogue of 21,208 galaxies that were visually classified
for containing streams or shells or as non-detections by Kado-Fong
et al. (2018). The sample of galaxies were selected from cross-
matching the HSC-SSP Wide internal data release S16A catalogue
(which covered ∼ 200 deg2 of the 300 deg2 presented in the second
public data release) to the SDSSDR12 spectroscopic galaxy sample.
The redshift limits of the sample are 0.05 < z < 0.45. Figures 3 and
7 of Kado-Fong et al. (2018) nicely summarize the sample selection.
In particular, Figure 3 of Kado-Fong et al. (2018) shows that there
are no particularly strong differences between the empirical density
functions of redshift and stellar mass for stream/shell hosts and the
density distributions for galaxies without stream/shell detections.

Each galaxy in the Kado-Fong et al. (2018) catalogue has a
descriptive label for whether it was identified as a stream/shell host
or whether it was a non-detection. These labels are used as the
target classes for training and validation of our CNNs. There are
1,201 detection labels, of which 987 are streams and 214 are shells
(with a handful of galaxies with both labels). The remaining 20,010
targets are non-detections. Random examples of the non-detections
and stream/shell hosts in cutouts of the HSC-SSP i-band images
are shown in Figure 1 and 2, respectively. Mislabeling will always
occur in visual classifications and this dataset is not an exception
– for both the non-detection and detection samples. Many of the
apparent misclassifications may be driven by changes in (1) the sky-
subtraction method and (2) completeness of the mosaics between
the original S16A classification images and the PDR2 imageswe use
(Aihara et al. 2019). Nonetheless, the data clearly satisfies the survey
objectives. The images are deep with high resolution (5σ point
source depth of 26 in the HSC i-band and a median i-band seeing of
0.56 arcseconds) – revealing low surface-brightness structures with
great clarity.

2.3 Training images

The size of the raw i-band cutout images (87 arcsec, the same
size as was used for the original classifications) is large for the
CNNs which have been used for other morphological classification
tasks in astronomy (e.g. Huertas-Company et al. 2015; Ackermann
et al. 2018; Walmsley et al. 2019; Domínguez Sánchez et al. 2018;
Huertas-Company et al. 2019). Therefore, we performed several

tests aimed at reducing the size of the images without overly de-
grading the spatial resolution or cropping away the stream and shell
structures. However, given the enormous range of radial separa-
tions of stream and shell features from their hosts, we ultimately
performed a simple rebinning onto a 128× 128 pixel grid. Through
visual comparison of the raw and rebinned images, we determined
that the loss of resolution did not significantly hamper the visibility
of streams, shells, or other low surface-brightness features. In our
current tests, we use only the i-band, which has the best depth and
resolution of the HSC-SSP observations.

Training with only a single band also affords other advantages
in terms of limiting the information that a neural network can use to
make classifications. A CNN that is trained on a single band cannot
exploit colour information. This colour-insensitivity is particularly
relevant for detecting features related to galaxy interactions. Colour
correlates strongly with star-formation and mergers between gas-
rich galaxies exhibit enhanced star-formation (e.g. Hernquist 1989;
Barnes & Hernquist 1991; Ellison et al. 2008; Patton et al. 2013;
Blumenthal & Barnes 2018). Therefore, classifications could un-
desirably be made on the basis of colour rather than the presence
of stream or shell features. In contrast, a CNN that is single band
cannot make such a connection and makes classifications that are,
by construction, unbiased by colours of the host.

The image intensities are placed on a logarithmic scale in such
a way that the contrast is optimized for the central target in each
image following the approach of Bottrell et al. (2019, submitted).
First, we take the logarithm of the calibrated, sky-subtracted HSC-
SSP image in AB nanomaggies (Oke & Gunn 1983). All pixels
which become undefined under this operation are set to -3. We
then compute the 99th percentile inside a (20,20) pixel window
centred on the central target galaxy. Everything in the full image that
exceeds the 99th percentile is clipped to this value. We take 0.001
nanomaggies (-3 in our log images) as a lower bound. Everything
below this lower bound is clipped to this value. We then shift and
subsequently scale the full image to a number between zero and
one using these upper and lower bounds. Figures 1 and 2 show that
this normalization is optimized to highlight low surface-brightness
structures while preserving the bulk galaxy light. We will explore
other normalizations in future work.

Given the large imbalance between the detection and non-
detection images, we apply augmentations to the images. Eight
augmentations of every image are generated which span all possi-
ble flip and 90◦ rotation transformations, shifts the image by up to
10% of its rebinned size, and crops and rebins the image by down
to 70% of its original size. These augmentations are simple but do
not generate edge artifacts from cutting off other sources that would
arise withmore rotational freedom. Since we are looking for regions
with high spatial frequency, such edge artifacts would be problem-
atic. We oversample the detection images by storing all of these
augmentations while only holding a single augmentation per non-
detection image. Augmentation brings the class imbalance between
positives and negatives to 9, 608 : 20, 010. We then downsample
the non-detections by selecting the first 10,000 in the Kado-Fong
et al. (2018) catalogue. For a given model, we adopt a train, valida-
tion, and test split of (70, 15, 15)%. The test images are all originals
and augmentations of the test images are discarded. We also clarify
(given our unconventional procedure for generating augmentations)
that we apply the training/validation/test split such that augmenta-
tions of original images within a given subset only appear in that
subset. As such, no augmentations of the images in the training data
can appear in the validation or test data and vice versa.
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Figure 1. Example “non-detections” from the Kado-Fong et al. (2018) catalogue of stream/shell hosts in the HSC-SSP i-band (25 selected randomly). There
are 20,010 galaxies classed as non-detections in the Kado-Fong et al. (2018) catalogue in total. The cutouts are 512 × 512 pixels which correspond to an
angular field of view of 87 arcsec. The upper and lower labels are target classes for each object and the cross-matched object ID to the survey providing the
spectroscopic confirmation and redshifts, respectively. Given the subjective nature of visual classification (even boosted by an algorithm such as the one used
in Kado-Fong et al. 2018), misclassifications are possible. In particular, the galaxy at (column 2, row 3) is a host of both stellar stream and shell structures.
Indeed, these misclassifications are fairly common in the non-detections sample – likely owing to the large sensitivity of classifications to the choice of contrast
and whether the high spatial frequency features were picked up by the Kado-Fong et al. (2018) wavelet decomposition. Nonetheless, these images demonstrate
the remarkable image quality of HSC-SSP.

2.4 Convolutional neural networks

Though our goal is to characterize the type of tidal feature, we first
test whether we can train a model which distinguishes the hosts
of streams and shells from galaxies that do not host these tidal
features. If successful, we can then move to either: (1) a nested
CNN – in which one CNN first classifies targets as detections or

non-detections and then a subsequent CNN classifies detections as
streams or shells; or (2) a multi-class or multilabel CNN which
performs the classifications with a single model.

For the binary task of classifying systems as detections or
non-detections, we use a convolutional neural network architecture
similar to ones used in other morphological classification analyses
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Figure 2. Example “detections” from the Kado-Fong et al. (2018) catalogue of stream/shell hosts in the HSC-SSP i-band (25 selected randomly). There are
1,201 galaxies with a detection label of stream or shell. As with the negatives, there are some targets with less certain classifications. For example, (column 4,
row 4) shows no signs of hosting stream or shell features, yet is classed as a stream host. However, given that the stream/shell classes require some criterion to
be classified as such, it is expected that the detection sample is more pure than the non-detection sample – though perhaps with low completeness. Combined
with Figure 1, these misclassifications in the catalogue represent challenges to training neural networks which will automate the classifications.

(e.g. Huertas-Company et al. 2015; Ackermann et al. 2018; Walms-
ley et al. 2019; Domínguez Sánchez et al. 2018; Huertas-Company
et al. 2019). The model consists of four convolution layers – the
first three of which include (2,2) max pooling. These four convo-
lution layers have kernel sizes of (5,5), (3,3), (2,2), (2,2) and each
use REctified Linear Unit (RELU) non-linear activation functions.
We do not use dropouts in the convolution layers. The output from
the fourth convolution layer is flattened to a (32,768) feature array
and fed to two fully connected (FC) dense layers and a binary clas-

sification layer (sizes: 64; 16; 1). The FC layers use 50% dropout
rates and RELU activation functions. The classification layer uses a
sigmoid activation function. We use a training batch size of 32 and
the adadelta optimizer (Zeiler 2012) with a binary cross-entropy
loss function. We use the Keras API (Chollet et al. 2015) with
tensorflow as the backend (Abadi et al. 2015) for model creation
and training.
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Figure 3. Accuracy and log-loss for CNNs trained distinguishing systems
which host streams and/or shells from systems which do not, plotted against
training epoch. Thin coloured lines correspond to the training (black) and
validation (magenta) accuracy and log-loss for an individual CNN model
during training. Each individual model was trained using different random
split of training, validation, and test data to guarantee the robustness of the
model to the choice of training set – given the sparsity of the detection sam-
ple. The thick lines show the median values computed from each individual
model. The grey dotted line shows the mean epoch at which the optimal
(best-fit) model was saved before overfitting begins to occur. The best-fit
model is taken to be the model epoch that gives the maximum accuracy for
the validation set. The shaded regions shows the standard deviation in the
best-fit epoch. The median maximum validation accuracy is 77%.

3 RESULTS

3.1 Long-term stability of the CNN models

We trained CNNs using the architecture described in the last section
to perform the binary classification task of distinguishing systems
which host streams and/or shells from systems which do not. The
accuracy (the number of correctly classified images as a percent-
age of the total number of images) and log-loss as a function of
training epoch on the training and validation data are shown in Fig-
ure 3. Here, we force the model to continue training for 30 epochs
even where the optimal model has already been reached and place
a checkpoint at the optimal model. We define the optimal (best-
fit) model as the model epoch at which the validation accuracy is
maximized. To test the stability and variation in the CNNs’ perfor-
mance to the particular training set, we train 10models using unique
random training/validation/test splits of the data. The thin magenta
(validation) and black (training) lines show results of each of the 10
models on the corresponding data. The thick lines show the medi-
ans of the 10 models. The grey dotted line and shaded region show
the mean and standard deviation for the epoch at which the best-fit
checkpoint was made and the model was saved.

Figure 3 shows that our model reaches maximum accuracy
quite quickly and with little variation based on the training set that
was used. The maximum validation accuracy that is reached is quite
poor (77%) but is comparable with the validation accuracy for the
models from Walmsley et al. (2019) for their much cleaner and

smaller sample (∼ 77%, see their Figure 7)1. Figure 3 also shows
that a degree of overfitting is occurring. Until around epoch 11 or
12, the validation accuracy and loss track the training accuracy and
loss. However, instead of plateauing at this point, the validation
accuracy begins to decrease slightly while the training accuracy
continues to increase to 90% by epoch 30. This result demonstrates
that after epoch 11 or 12 the classifiers begin to lose generalizability
to data on which the CNNs were not trained. To avoid overfitting,
the models are saved at the point where the validation and training
scores begin to diverge. Each saved model has a unique test set
which corresponds to the unique random seed used to generate
the training/validation/test split. We discuss overfitting and possible
sources in Sections 4.1 and 4.4.

3.2 Class distribution functions

The overall accuracy does not reveal whether particular class is
preferred by the classifier. Figure 4 shows the distributions in P(X),
the “probability score” that an image contains streams or shells,
for the 10 CNN models (thin lines) and the median over these
10 individual models (thick lines) for images with detection target
classes (blue) and non-detections targets (orange). The left, centre,
and right panels correspond to the training, validation, and test
data, respectively. The trained CNNs behave predictably. The P(X)
distribution for images with detection targets is skewed to high P(X)
and the images with non-detection targets are skewed to low P(X).
Also, while individual CNN models vary (note the differences in
the low/high-P(x) tails of the distribution, specially for the positive
samples at P(x) > 0.9), the median training, validation, and test
distributions track each other – showing that there is no overfitting
to the training data due to our criterion for selecting the best-fit
models.We discuss the issue of overfitting in training epochs beyond
the best-fitting model in Sections 4.1 and 4.4.

3.3 Receiver operating characteristics

The receiver operating characteristic (ROC curve) for a binary clas-
sification relates the true positive rate or “recall," to the false positive
rate or “fall-out," for various thresholds of P(X). The true positive
rate is computed as TPR = TP/(TP+FN)where TP is the number
of true positives (images which are correctly classified by the CNN
as detections) and FN is the number of false negatives (images
which are misclassified as non-detections whose target classes are
detections). The false positive rate is FPR = FP/(T N +FN)where
FP is the number of false positives (images which are misclassified
as detections whose target classes are non-detections) and T N is
the number of true negatives (the number of non-detections that are
correctly classified). The relationship between these two quantities
shows the purity and completeness that is achieved by defining a
value of P(X) which would separate non-detections and detections.

Figure 5 shows the ROC curves for our CNNs for the training,
validation, and test data. The first three panels show the individual
ROCcurves for eachCNN (thin lines) and the correspondingmedian

1 Walmsley et al. (2019) used the visual classification sample from Atkin-
son et al. (2013) for a total of 1, 781 luminous galaxies with magnitudes
15.5 < r < 17 and redshifts 0.04 < z < 0.2 drawn from the Canada-
France-Hawaii Telescope Legacy Survey (CFHTLS-Wide, Gwyn 2012). As
discussed by Atkinson et al. (2013), their selection is heavily biased towards
bright galaxies predominantly in the range −23 < Mr ′ < −20 and with
half-light radii in a range of 2-6 arcsec.
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data. Thin lines show the distributions of stream and shell detection “probabilities” estimated by the CNN for images with non-detection target classes (orange)
and detection target classes (blue). The thick lines are derived from the median in each bin, after which the distribution functions are renormalized to unity.
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non-detections. We do not explore threshold optimization. Threshold optimization may make a difference on the level of a few percent in terms of classification
accuracy and F1 statistics.
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Figure 5. Receiver operating characteristic (ROC) curves for training (first panel), validation (second panel), and test (third panel). Thin lines show the results
for each of the 10 individual CNNs and solid lines show the median relation. The fourth panel shows the median ROC curves for the training, validation,
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classifications would be completely random and the AUC=0.5 (a fair two-sided coin flip between detection and non-detection). The validation and test ROC
curves track each other very well given the diversity of stream/shell and host morphologies that are possible.

ROC curves. The rightmost panel shows the median ROC curves
for each dataset along with the colour-coded area under the curve
(AUC) characteristics. The validation and test AUC (for which 1 is
a perfect classifier and 0.5 is completely random) track each other
very well owing to our early-stopping of the CNNs before they begin
overfitting to the training data as shown in Figure 3. Still, Figure 5
further illustrates that there is overfitting to the training data that is
not generalized to the validation or test data – resulting in higher
AUC and better TPR for any given FPR.

Walmsley et al. (2019) report a TPR of 76% (which they
term “completeness") for a corresponding false positive rate of
22% (which they term “contamination") with their ensemble CNN
– which combines the predictions of multiple CNNs by averaging
the output detection probability, P(X), from each CNN for a given
image. For the same FPR we have a slightly poorer test TPR of

75%with our single model. However, as was seen inWalmsley et al.
(2019), it might be anticipated that averaging the results from an
ensemble of CNNs with different architectures may improve our
results. We will explore this in future work.

3.4 Confusion matrix

Figure 6 shows the confusionmatrix for the test data for one of the 10
CNNs that we trained to detect stream and shell features in images.
A confusion matrix shows the distribution of predicted labels (y-
axis) for each true label (x-axis). Columns of this confusion matrix
therefore sum to unity. Many of the F1 diagnostic statistics for a
binary classification are represented in the elements of the confusion
matrix including the recall (lower right corner), specificity (upper
left corner), miss rate (upper right corner), and fall-out (lower left
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Figure 6.Test data confusionmatrix for one of our CNNs, selected randomly
from the 10 we generated. True labels are along the x-axis and predicted
labels are along the y-axis where “positive” corresponds to detection of
a stream or shell feature and “negative” corresponds to a non-detection.
The upper left corner is the true negative rate or “specificity”, TNR =

TN/(TN +FP). The lower left corner is the false positive rate or “fallout".
The upper right corner is the false negative rate or “miss rate", FNR =

FN/(FN +TP). The lower right corner is the true positive rate. The model
achieves a reasonable TPR of ∼ 80% though this success is accompanied
by a large amount of contamination as denoted by the FPR of ∼ 26%.

corner). The precision, TP/(FP + FN) is 75%. The corresponding
F1-score, the harmonic mean of precision and recall, is 0.77.

The diagnostics from this section and our comparison with
other works illustrates that our models are performing reasonably
but are hindered by some factor that is preventing the validation
and test accuracies and performances from tracking the training
accuracies as seen in Figure 3. In other words, there is information
in the training data that is allowing the network to continue to learn
but is not generalizing to the validation and test data.

4 DISCUSSION

4.1 Overfitting

Figure 3 shows that the training accuracy and loss quickly decouple
from the validation accuracy after only 11 to 12 training epochs, on
average. This decoupling is a clear indicator of overfitting. Creat-
ing a model checkpoint at the epoch where this decoupling occurs
prevents the model from overfitting to the training data. However,
the fact that the CNN continues to improve in training accuracy
indicates that there is information that is being exploited in the
training set but is not translating to the validation set. Our model
does not have so many trainable parameters (∼ 2 million) that it
should approach a dimensionality problem for our dataset (where
the number of trainable parameters is of similar order as the num-
ber of data points). If the overfitting is indeed not a dimensionality
problem, then there is some information that is being learned which
is effective in the training set but not the validation and test sets.

It may be that the images are too large and contain too much

additional information (neighbouring sources, etc.). However, the
challenge of making the images any smaller is two-fold: (1) further
cropping would crop away highly extended stream and shell fea-
tures and remove them from the data; and (2) further degradation
of the spatial resolution to 64 × 64 pixel images (still 87 arcsec)
may degrade the tidal features sufficiently that they are no longer
distinguishable from the host. After all, the primary motivation for
employing the HSC-SSP images for this task was its exceptional
depth and resolution for a ground-based large-program optical sur-
vey. In any case, the effects of such changes to image field of view
or scale will be explored.

4.2 Hyper-parameter search

We performed a crude hyper parameter search over a few alternative
CNN specifications to assess the sensitivity of network success to
the details of the model and to assess whether our choice of model
was well-motivated. In our presently completed search, we focused
on the effect of the dropout rate in the FC layers and a different
batch size, exploring values in the range (dropouts: 0.0, 0.25, 0.5,
and 0.75) and ( Nbatch = 10 compared to the 32 we used in the
fiducial runs). Comparing the recall values of these CNNs to the
recall from Figure 6, all do more poorly by at least ∆(Recall) = 6%.
While a larger and more rigorous hyper-parameter search remains
to be explored, these results demonstrate that our CNNs at least do
not exhibit a poor choice of architecture. Indeed, slight variants of
this architecture are proven to be effective in dealing with various
galaxy morphological classification tasks (e.g. Domínguez Sánchez
et al. 2018; Huertas-Company et al. 2019).

4.3 Does the model favour streams or shells?

In this section, we investigate whether the CNNs preferentially
classify or misclassify images with stream or shell target classes.
Streams and shells are unique signatures of the orbital scenario
and time since a merger event (e.g. Johnston et al. 2008). Conse-
quently, knowing whether a CNN is a better/poorer classifier of
either streams or shells is important if we want sufficient purity
and completeness of both signatures. Since our CNNs are binary
classifiers, we cannot estimate the FPR of either streams or shells
because we cannot estimate the number of false positives for each
type individually, FP(streams) and FP(shells). However, we can
compute the TPR (recall) and FNR (miss rate) for the CNNs.

We select one of our models at random (the same for which
the confusion matrix is shown in Figure 6). For this model, we
split the test data for which the target classes are detections
into streams and shells according to the catalogues. We com-
puteTPR(streams) = TP(streams)/(TP(streams)+FN(streams)) =
80%, where TP(streams) is the number of true positives and
FN(streams) is the number of false negatives with “stream” tar-
get classifications. Similarly, TPR(shells) = 81%. These results
indicate that neither tidal feature is particularly “favoured" by the
CNNs. The true positive rate for each morphological signature is
the same. The corresponding miss rates for streams and shells are
20% and 19%, respectively.

4.4 Limitations of the target classifications

Figure 1 revealed the possibility of misclassifications in the Kado-
Fong et al. (2018) catalogue. Such a misclassification as the one in
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Figure 7. Correctly classified non-detections by the CNN for which the confusion matrix is shown in Figure 6. The images that are classified as non-detections
by the network appear to be genuine non-detections despite the possibility of misclassifications in the test data target classes due to the heavy crowding that
comes with the HSC-SSP imaging depth. It should be noted that these are the test images as the CNN sees them and have consequently degraded to (128,128)
pixels for their 87 arcsec field of view.

(column 2, row 3) of the random 25 images selected from the non-
detections sample begs the question of how many other targets are
similarly misclassified. We explore misclassifications in the target
classes by examining the true positives and false positives from our
CNNs. Specifically, we focus on the predictions of one of our CNNs
chosen at random (the ones for which the results are shown in Figure
6).

First, Figure 7 shows 25 random correctly classified non-
detection images (T N). The true negatives shown here all appear
to be genuine negatives – with a possible exception in the case of

(column 1, row 5) with a shell-like extending from the lower left
of the central galaxy. While some galaxies do appear to be in on-
going mergers, our goal is not the detection of early-stage ongoing
mergers but stream/shell detection for a central host. These are two
very different problems. Streams and shells allow us to infer the
history/scenario of a past or ongoing merger. Merger scenarios will
be much more difficult to infer without these features given that the
morphologies and extent of these features are tell-tale signatures of
the merger scenario.

Figure 8 shows the true positives in the test data for the CNN
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Figure 8. Correctly classified detections by the CNN for which the confusion matrix is shown in Figure 6.

from Figure 6 (correctly classified detection images). These true
positive images largely exhibit the desired features. However, there
is an exception in (column 2, row 4) where no visible shell can
be seen. It is possible that our pre-processing steps have hidden
the shell (at least visually). Nevertheless, this galaxy appears to
contain no shell in the preprocessed image and yet was classified by
the network as a detection. So either the CNN is picking up more
subtle features than are visually accessible or the contamination
rate is likely to be high. Since Figure 6 showed that the FPR or
contamination is already 26% (26% of images whose target classes
are non-detection are misclassified as detection), the latter is likely
the main culprit for this galaxy being classified as positive despite
visually lacking positive features.

In Figure 1 we highlighted a particular galaxy in the non-
detection images which exhibits clear stream and shell features.
Given the high false positive rate in the data, the prevalence of sim-
ilar misclassifications in the Kado-Fong et al. (2018) catalogue is
a central concern2. If a sufficiently large fraction of images with
the non-detection target class exhibit stream and shell features, then
the CNN’s learning will be stifled. One natural consequence is
overfitting. During training a CNN will continue to optimize its

2 In future work, we will contact the authors of Kado-Fong et al. (2018)
and collaboratively investigate the factors which may have driven these
misclassifications.
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Figure 9. Images with the non-detection target class (shown in the label at the top of each image) which are misclassified as detections by the CNN for which
the confusion matrix is shown in Figure 6. While some galaxies in this set simply exhibit spiral arms which may be difficult to distinguish from streams, many
visually exhibit genuine stream and shell structures and yet have non-detection target classes.

classifications regardless of whether there are misclassifications in
the target data. For example, for the training non-detection and de-
tection images, a CNN may learn to associate specific stream/shell
morphologies to each set (even where the non-detection set should
not contain these morphologies). While this allows the training
accuracy to improve, it loses generalizability to new data (the vali-
dation and test set). Therefore, if the non-detection dataset contains
a large amount of images which host stream and shell features, then
we have a possible explanation for the rapid and significantly decou-
pling of the long-term training and validation accuracies and losses
in Figure 3.

Figure 9 shows 25 random false positives in the test data for
the CNN from Figure 6 (non-detection images misclassified as de-
tections). There is a large number of galaxies in this sample of 25
random images with the non-detection target class that visually ex-
hibit stream and shell features (even in these degraded (128,128)
pixel images). On one level, this set of images provides validation
that the network is behaving in the desired way. Despite the fact
that these images have non-detection target classes, they are being
classified as detections by the CNN. The catch is that with random
splitting of the training, validation, and test data, these same images
may appear in the training set of a CNN. Owing to the similar per-
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formances of 10 CNNs trained on unique random selections of the
training data shown in Figures 3, 4, 5, it is unlikely that the problem
is unique to this particular split. Following the arguments in the last
paragraph, having target misclassifications such as these presents
at least two crucial problems: (1) overfitting to the training data
and consequently stifling/decreasing validation and test accuracy
and (2) erroneous F1 statistics and consequently a poor idea for the
completeness or purity of the detections for a given CNN. Owing
to these factors, target misclassifications may represent the most
significant barrier to improving our classification performance.

However, we emphasize here that Kado-Fong et al. (2018)
combined visual inspection with the detections from their filtering
method. This combination provides strict criteria for an image to be
included in the detection category. Consequently, their sample of
galaxies which were classified as exhibiting streams/shells is prob-
ably very pure but may suffer from incompleteness – as highlighted
by the identification of galaxies with streams and shells as false
positives by our CNNs. The incompleteness may originate from the
sky-subtraction methods in the HSC-SSP PDR1 which have been
updated significantly in PDR2 (Aihara et al. 2019) and are known
to affect detection of low surface-brightness features. It may also
arise from variation in angular resolution across the HSC-SSP. We
will explore the impact of these effects in future work. We empha-
size that Kado-Fong et al. (2018) catalogue of streams and shell
hosts still offers remarkable scientific opportunities for studying
the properties of stream and shell hosts due to the high purity of
the detection sample. However, studies which will focus on the en-
hancement or suppression of physical phenomena or properties of
stream/shell hosts relative to matched control galaxies which do not
exhibit such tidal features must be aware of the contamination in
the non-detection sample.

4.5 Future work

Improving the performance of a CNN for this task may require more
accurate targets in the non-detections sample as highlighted in Sec-
tion 4.4. While the Kado-Fong et al. (2018) catalogue of stream
and shell hosts and non-detections represents enormous progress
towards obtaining a sufficiently large dataset that an automated
classification model can be trained, the misclassifications of images
shown in Figures 1 and 9, in particular, may hamper the CNNs’
performances and limit the meaningfulness of the F1 statistics we
present. Therefore, a re-classification of the images (at least the
non-detections from the catalogue) may be necessary. To ensure
that the CNN is trained using data with the same standards as the
human classifier, the same normalization should be used (optimiz-
ing the contrast for the central target as discussed in Section 2.3)
but allowing the user to adjust scale and contrast as desired. The
method used by Kado-Fong et al. (2018) for enhancing high spatial
frequency features can be used to compliment these classifications
but should not be the primary basis for the classifications.

In this work we trained 10 CNNs using different random splits
of the training, validation and test data to examine the robustness of
CNNs’ performances to the specific split used. After a more exten-
sive grid search over alternate architectures and hyper-parameters,
an ensemble of CNNs trained on the same training data can be
used to boost performance (e.g. Walmsley et al. 2019). With a
model that is able to effectively discriminate between detections
and non-detections (and between streams and shells, amongst de-
tections), we can perform automated classifications over the whole
of the HSC-SSP imaging campaign to obtain unprecedented sample
statistics on streams and shells and their hosts. Another item that

remain to be explored is the redshift and magnitude dependence
of the classification accuracies and whether streams or shells in
particular exhibit stronger dependence on surface brightness and
resolution limits. Additionally, a greater exploration of CNN archi-
tectures is warranted. In this work, we used only the i-band imaging.
An examination of the improvements to our CNNs’ performances
by including other bands (allowing for colour sensitivity) is of in-
terest. These tests will provide insight into the origin of the limited
performance of our classifiers.

Furthermore, one particular advantage of the algorithm devel-
oped in Kado-Fong et al. (2018) is that it identifies the specific pixels
which correspond to a stream or shell feature. We are therefore also
planning a parallel project which will employ the recent Morpheus
tool (Hausen&Robertson 2019) to perform automatic segmentation
and classification of stream and shell features on a pixel-by-pixel
level. The pixel-level identification of tidal features will open en-
tirely new opportunities in the characterization of streams and shells
along with their host galaxies.

5 CONCLUSIONS

In this work, we trained CNNs to detect stream and shell features
in images from the HSC-SSP Data Release 1 using the Kado-Fong
et al. (2018) stream and shell search catalogue. The search catalogue
covers an unprecedentedly large sample of 21,208 galaxies from
HSC-SSP with confirmation spectra and redshifts from the SDSS
DR12 of which 1,201 are stream or shell hosts and 20,010 are non-
detections. In this pilot study, we focus primarily on detection of
stream/shell features rather than distinguishing between them. We
evaluate the CNNs’ performances in a binary classification of (0)
non-detection and (1) detection of stream and shell features. Our
results are as follows:

• The training data in for CNNmodels are quickly overfitted
(Figures 3, 4, 5). Our characterization of the CNNs’ performances in
the training, validation, and test data showed that the CNNs quickly
and substantially overfit the training data – yielding relatively poorer
accuracies in the validation and test data. Our best-fit CNNs achieve
accuracies of 77% in both the validation and test data.
• Non-detection images from the Kado-Fong et al. (2018) cat-

alogue contain galaxies which exhibit strong stream and shell
features (Figure 1, column 2, row 3 and most panels from Figure
9). Our cursory characterization of the data used to train the CNN
showed that many galaxies from non-detection set are misclassifi-
cations.
• One of our CNNs (selected at random) has a TPR or recall

of 80% and an FPR or contamination of 26% (Section 3.4 and
Figure 6). We compare the performance of this CNN with the work
of Walmsley et al. (2019) and show that we achieve very similar ac-
curacies. This is particularly notable given the much greater sample
size and redshift range in the Kado-Fong et al. (2018) stream/shell
search catalogue compared to the (Atkinson et al. 2013) sample
used by Walmsley et al. (2019).
• We argue that misclassifications in the Kado-Fong et al.

(2018) catalogue (particularly for the non-detection set) may
limit improvements to the models’ performances (Section 4.4
and Figure 9). The misclassifications in the targets for each image
invite overfitting to the training data and loss of generalizability
to the validation and test data. Consequently, the statistics which
represent purity, contamination, miss rates, etc. are not likely repre-
sentative of the true statistics. However, we have yet to explore red-
shift, magnitude, and angular resolution dependence on the CNNs’

MNRAS 000, 1–13 (2019)



Streams and shells in HSC 13

performances. So misclassifications in the targets may not be the
only (or dominant) factor which is limiting CNN performance.

Looking forward, an automated method for detecting and dis-
tinguishing between stream and shell features in large ground-based
imaging programs such as the HSC-SSP is necessary if we want to
infer the scenarios of the interactions which produced these features.
The Kado-Fong et al. (2018) visual classification sample allows the
training/calibration of more automated methods which can then be
used to automatically classify other galaxies in the full HSC-SSP
imaging campaign. However, we have shown that more accurate
classifications of the training data are probably required for this
goal to be realized.
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