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ABSTRACT
We present an adaptive importance sampling method that can significantly enhance
stellar evolution simulations, especially when considering rare events. Simulations often
involve calculating integrals over the initial parameter space, e.g. when calculating the
fraction of binary black hole mergers. The method presented here estimates the wanted
outcome by drawing samples from an instrumental distribution that is adaptively
build-up from the function output. We test the performance of the method on rapid
binary population synthesis models to estimate (i) the fraction of BBH mergers and
(ii) the chirp mass distribution. We find that this method reduces the costs of the
simulation up to a factor ∼ Y .
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1 INTRODUCTION

Binary population synthesis models are a versatile tool in as-
trophysics to make predictions for populations of stars and
the rate of astrophysical transient events of stellar origin.
Binary population synthesis models have now been used to
study a variety of astrophysical problems ranging from the
characteristics of young stellar populations and how they
are affected by the products of binary interaction (de Mink
2013, Schneider+14) to the end stages as core collapse su-
pernova (Zapartas+17), and the more exotic outcomes such
as type IA supernovae (Toonen), and gravitational wave
sources (Stevenson+2017).

The models include a large variety of physical pro-
cesses that can take place during the evolution of a star
in a binary system such as super nova explosions, stel-
lar winds, mass transfer and common envelope evolution.
Examples of binary population synthesis models are BSE
(Hurley+2000, Hurley+2002 and references within),binary c
(Izzard+2004, Izzard+2009), StarTrack (Belczynski+2005),
SEBA (Portegies-Zwart 1996, Verbunt+1996) and COM-
PAS (Stevenson+2017). These models interpolate between
evolutionary tracks of single stars obtained with a detailed
stellar structure code (Pols+98) and rely on an approxi-
mate treatment of the physical processes. Therefore, they
can present a rapid code that can evaluate the evolution of
many stars and populations of stars. However, due to the
multi-scale nature, complex processes involved and many
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initial parameters of the evolution, modelling a full popu-
lation of binary systems is still computationally expensive
and simulations are often limited by the scarce computa-
tional resources. The computational cost therefore can be
a limiting factor in our exploration of the parameter space
and hence understanding of the model outcome.

Especially when simulating a process that involves rare
events, many simulations are needed before a simulation out-
come is determined with certain precision. An example of a
rare event are the initial binary systems that eventually pro-
duce gravitational waves. To evolve to a binary black hole
(BBH) that produces gravitational waves (GWs) that can be
observed by GW detectors LIGO and Virgo, the initial bi-
nary system has to start with massive stars and survive pro-
cesses such as mass transfer, common envelope evolution and
supernova kicks. Therefore, only a very small fraction of the
initial parameter space of the population of binary systems
eventually produces BBHs that can merge within Hubble
time and produce GWs. Nevertheless, knowing which part
of the parameter space produces the BBHs and GWs and
their properties and comparing this with the recent observa-
tions of GWs (Abbott+2016) help improve our understand-
ing of the binary population synthesis models and physical
processes included.

In this paper we describe a method that aims to re-
duce the computational cost of the simulation of rare events
in binary population synthesis models by using a method
called importance sampling. We investigate the computa-
tional benefit of this method over the techniques that are
traditionally applied such as Monte Carlo sampling. We test
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our method for the binary population synthesis model COM-
PAS to efficiently calculate the fraction of binary stars that
eventually produce GWs within Hubble time, and the chirp
mass distribution of these BBHs.

2 METHODS

Calculating informative properties of the outcome of simu-
lations such as the fraction of BBHs that produce GWs or
their chirp mass distribution often involves calculating inte-
grals. However, since in a simulation only a finite number
of simulations are run, in practice it comes down to esti-
mating the value of the integral from the evaluated simula-
tions. The most used method to do this is the Monte Carlo
method. The aim of this paper is to introduce a method
that improves this estimation compared to the Monte Carlo
method. Therefore, we will first introduce the Monte Carlo
method before explaining the proposed method.

2.1 Monte Carlo estimator

Let x = x1, x2, ...xd be a random variable of dimension d
and let p(x) be the initial probability distribution function
of x. Let φ(x) : Rd → R be a function that evaluates the
input variable x in the model u(x) and maps it to an output
of interest. For example, u(x) can represent the population
synthesis model and φ(x) can be the function that maps the
initial mass of a star to its final mass.

The basic principle of the Monte Carlo method is to gen-
erate a finite number of random samples x1,x2, ...xN that
are identically and independently distributed from p(x) and
represent the distribution. The expectation value of φ(x) can
then be estimated with the Monte Carlo method by

M̂ [φ(x)] =
1

N

N∑
k=1

φ(xk) ≈ E[φ(x)]. (1)

The Monte Carlo method estimator has a convergence
rate of O( 1√

N
), which can be derived from the central limit

theorem. Although the convergence rate is independent of
the number of dimensions, it is also relatively slow: to de-
crease the error of (1) by a factor of ten, one needs to increase
the number of samples by a factor of hundred. The goal of
this paper is to try to improve the estimator (1) focusing
on simulating rare events with binary population synthesis
models.

2.2 Importance sampling

Importance sampling can reduce the error of estimation ob-
tained after a given number of evaluations (and therefore
the costs of the simulation), by taking the random variables
x1,x2, ...xN from a so-called instrumental distribution g(x),
which is a different distribution than the prior distribution
p(x) but acts on the same parameter space. The idea is to
take an instrumental distribution that samples more sam-
ple points xk in the part of the initial parameter space that
contributes most to our output parameter space of interest
(e.g. BBH mergers). Especially when simulating a process
where a small part of the initial space produces the output

Figure 1. The intuitive idea of importance sampling is that of-

ten in the initial distribution function only very few of the drawn
samples will contribute to calculating the integral of the output

function (especially in rare events). The idea of importance sam-

pling is to change the distribution from which the random vari-
ables are drawn such that a higher fraction of the drawn samples

contribute to the outcome.

of interest (i.e. a rare event), changing the sampling distribu-
tion can significantly reduce the costs of the simulation. The
intuitive idea of importance sampling is shown in Fig. (1).

However, since the sampling distribution is changed,
weights are introduced that correct for this in the estima-
tion of the expectation of φ(x). If x is initially distributed
by p(x) and the instrumental distribution g(x) is used, the
estimator for the expectation value of φ(x) via importance
sampling is given by

Î[φ(x)] =
1

N

N∑
k=1

φ(xk)
p(xk)

g(xk)
, (2)

where p(xk)/g(xk) = wk are the weights.

2.3 Adaptive importance sampling

Often the output function φ(x) is not known before run-
ning any simulations, hence the instrumental distribution
g(x) cannot be determined on beforehand. Instead, we use
an adaptive sampling scheme that adaptively samples from
an instrumental distribution gi(x) that is based on earlier
model outcomes. The basic algorithm of the method works
as follows:

(i) Sample random variables x1,x2, ...xN from the initial
distribution p(x) and evaluate φ(xk) for all k = 1, 2, ..Nini

until a certain threshold is reached. This threshold can for
instance be a number of successful evaluations e.g.“when 100
binary black hole mergers are simulated”or“when 100 binary
black holes with chirp mass above 20 M� are simulated”. In
each case there is an initial number Nini of sample points in
parameter space needed to produce Ns initial successes of
the model (where Ns = 100 in our examples).

(ii) Now define the instrumental distribution g1(x) as a
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mixture of Ns Gaussian distributions around the Ns suc-
cessful sample points in the initial parameter space. The
instrumental distribution is then described by

g1(x) =

Ns∑
i=1

1

Ns
N (µi,Σi), (3)

where each Gaussian distribution N (µi,Σi) is equally
weighted with 1/Ns in the mixture distribution. The idea
is thus that each Gaussian distribution N (µi,Σi) as part
of the mixture g(x) is drawn around one “successful” sample
point xi ∈ {xi}i=Ns

i=1 . This implies that the means µi of the
individual Gaussians in Equation (3) are given by

µi = xi for i = 1, 2, ..., Ns. (4)

The covariance matrix Σ is chosen to scale with the average
expected distance between two sample points {xk}k=Nini

k=1 in
our initial parameter space. This is chosen such that sam-
ples drawn from a Gaussian N (µi,Σi) will generally fall in
between the successful point (and mean of the Gaussian) xi
and its nearest neighbour. For simplicity we choose Σi = Σ
for all i and also a diagonal covariance matrix for Σ given
by

Σ =

σ
2
1 0 . . .
...

. . .

0 σ2
d

 , (5)

where each σk is given by

σk =
‖maxk −mink‖

(Nini)1/d
for k = 1, .., d. (6)

In Equation (6) maxi and mini are the maximum and min-
imum range of xi. (NB: for later generations of g(x) Nini is
changed into Ntot, the total number of samples that were
drawn and evaluated in the simulation at this stage).

(iii) New samples x1,x2, ...xK are drawn from the instru-
mental distribution g1(x) given by Equation (3) and evalu-
ated in the function φ(x). Since we are now drawing sam-
ples from the instrumental distribution that is focused in
the initial parameter space around the initial samples that
produced an outcome of interest, the samples that we draw
from the instrumental distribution will more often also pro-
duce the rare event - as long as the output space does not
behave too chaotic or stochastic.

(iv) From these evaluations the expected value of φ(x)
can be estimated using Equation (2) and the uncertainty of
the estimation.

(v) Increase the number of sample points, or repeat steps
(ii) to (iv) to update the instrumental distribution (which
will converge to the distribution of the rare event) until a
certain error is reached.

3 A TEST CASE APPLICATION: BBH
MERGERS

Consider for u(x) the binary population synthesis model
COMPAS that simulates the evolution of binary systems and
focuses on the evolution to compact objects such as neutron
stars and black holes. Suppose the initial parameter space is
3-dimensional (d= 3) with parameters x = (M1, a, q), where
M1 is the initial mass in solar mass M� of the most massive

[]

Table 1. Summary of properties initial parameters

parameter pdf range

M1 p(M1) ∝M−2.35
1 [7, 100]M�

a p(a) ∝ 1/a [0.1, 103]AU

q 1 [0, 1]

star (the primary) in the binary system, a is the initial sepa-
ration of the binary given in AU and q the initial mass ratio
of the binary, i.e. q = M2/M1 where M2 is the mass of the
secondary. Suppose the outcome of interest is the fraction of
binary black hole mergers fBBH merger, our output function
φ(M1, a, q) can then be given by

φ(M1, a, q) =

{
1 if u(M1, a, q) produces a BBH merger

0 else

(7)

The fraction of the initial parameter space that will produce
BBH mergers when evaluated in the model (i.e. fBBH merger)
can then be estimated by using Equation (2) by simulating
N binary systems with the adaptive importance sampling
method. In other words

f ≈ Î[φ(M1, a, q)] =
1

N

N∑
i=1

φ(M1, a, q)
p(M1, a, q)

g(M1, a, q)
. (8)

Assuming p(M1, a, q) = p(M1) p(a) p(q) the prior is
given by the product of the individual probability distribu-
tion functions which are summarized in Table 1. Using these
distributions, we find

p(M1, a, q) ∝
M−2.35

1

a
(9)

Following the algorithm described in Section (2.3) we
define the instrumental distribution

g1(M1, a, q) =

Ns∑
i=1

1

Ns
N (µi,Σ). (10)

By filling in Equations (7), (9) and (10) into Equa-
tion (8) we have all the ingredients for the importance sam-
pling estimator.

4 PRELIMINARY RESULTS

To test how well the adaptive importance sampling method
works we run a large Monte Carlo simulation with more
than 107 sample points to estimate the fraction of the BBH
mergers within the mentioned initial parameter space up to
error 1.4 ·10−5. We find f = 0.002797±14. We then run the
simulation using the adaptive importance sampling method
with different number of total samples Ntot and estimate
the fraction of BBH mergers with Equation (8) and compare
this with the value for the fraction found by the large Monte
Carlo run. We also run the simulation with Ntot samples us-
ing the crude Monte Carlo method as given in Equation (1)
and add the estimated error from the true fraction to the
plot.
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Figure 2. Plot of the test function φ(x) that is used to obtain

the preliminary results. φ(x) maps all x within the sphere (blue
dots) to 1 and the rest to zero. The volume of the spheres is

chosen such that the fraction of successful samples (blue dots) is

representative for COMPAS.

At the moment of writing, the full code that works for
the binary population synthesis model COMPAS is still in
progress. Nevertheless, we have tested the adaptive impor-
tance sampling on a test problem and show in this section
the results of these tests.

For the preliminary tests, we created a 3-dimensional
parameter space Ω3 = [−1, 1]3. We defined φ(x) to be a
function on Ω3 such that it maps a fraction f ∼ 0.00345 of
the full parameter space to 1 whilst the rest maps to zero
(i.e. φ(x) = 1 on three spheres in Ω3 and 0 else). This value
for the fraction is chosen such that it is representative for
the fraction of BBHs that merges within Hubble time in
simulations run with population synthesis model COMPAS.
The regions that map to zero are defined as three spheres
within the parameter space, which are shown in Figure 2.

We initially draw samples from a 3D uniform distribu-
tion and after thirty of the initial samples fall in the volume
of the spheres (and thus evaluate to 1 instead of 0) the ini-
tial sampling is stopped and we change to the adaptive im-
portance sampling scheme. To test the performance of the
method, we run the simulation several times for multiple
Ntot and compute the error. We compare the results with
the Monte Carlo method and the true value of the fraction,
which in this case can be determined analytically by the vol-
ume of the spheres. The results are shown in Figure 3. From
this Figure it can be seen that:

• The error of the estimation for both methods is smaller
for larger Ntot. This is expected as more simulation runs,
and thus more computational cost, will usually give better
results.
• The errors of the adaptive importance sampling method

are always smaller than the errors from the Monte Carlo
method. This means that with the same number of runs, the
adaptive importance sampling method gives better results
than the Monte Carlo method.
• The adaptive importance sampling method is a factor

Y more efficient: the same error is obtained with Y times
less sample points.

Figure 3. Mean absolute error of the adaptive importance
method (red) and the Monte Carlo method (green) as a func-

tion of the number of simulations run Ntot (i.e. the computational
costs). These results are still preliminary as it obtained from tests

with the toy population synthesis model. We are working on per-

forming a similar test when the code is fully adapted for binary
population synthesis codes like COMPAS.
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