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ABSTRACT

Motivated by observations at the solar surface of sunspots embedded in active regions, it is widely

believed that large scale, strong magnetic flux emerges from the Sun’s deep interior in the form of

arched, cylindrical tube-like structures, often known simply as flux tubes. Here, we continue a line

of research that examines the different dynamics encountered when one considers these structures

as concentrations in a volume-filling magnetic field rather than as isolated magnetic structures in a

field-free background. In particular, here, via numerical simulations, we consider the buoyant rise

of magnetic flux concentrations from their formation in a deep radiative zone, through a turbulent

overshooting convection zone that self-consistently arranges a volume-filling large-scale background

field. This work is complementary to earlier papers that considered such dynamics in the absence of

convection, where the form of the background field had to be assumed. That earlier work established the

existence of a selection mechanism that created an increased likelihood of successful rise for magnetic

structures that had one sense of twist (measured relative to the orientation of the background field),

and a decreased likelihood for the other sense. This mechanism, when applied to the solar context, is

commensurate with the solar hemispherical helicity rule (SHHR) and therefore may be considered as a

possible contributor to this rule. This paper establishes the robustness of this selection mechanism in

a more realistic model incorporating convection and therefore a self-consistent background field. The

overshooting convection transports (or “pumps”) any initial large-scale horizontal magnetic field out

of the convective region, accumulating it in a layer at the edge of the overshooting region. Flux tubes

placed within this layer (as if they were forming there) then experience the selection mechanism where

some rise and some do not, depending on their twist characteristics (relative to the background field).

Convection only weakly influences the selection mechanism, since the mechanism is enacted at the

initiation of the rise, at the edge of the overshoot zone. Convection does however add another layer of

statistical fluctuations to the bias, which we investigate by Monte Carlo-like suites of simulations in

order to explain variations in the SHHR.

1. INTRODUCTION

Observations of active regions and their sunspots have

arguably had the largest influence on our understand-

ing of the operation of the global dynamo that powers

the magnetic activity of the Sun. That these objects,

first associated with the magnetic field by Hale (1908),

emerge from the highly turbulent plasma and yet obey

a set of strict rules, is quite remarkable. Sunspots occur

in pairs, with a leading polarity and a trailing polar-

ity that switches cyclically with a period of about 11

years (Hale’s Polarity Laws), and with a definite tilt of

the leading object towards the equator (Joy’s Law; Hale

et al. (1919)). So-called “butterfly diagrams” of tracers

of this cyclic activity exhibiting the regular regeneration

of magnetic field strongly suggest that a dynamo is likely

responsible for this behaviour.

The prevailing theory behind these observations at-

tributes active regions and sunspots to the emergence of

elements of strong toroidal magnetic field through the

visible surface of the Sun (Parker 1975). If cylindri-

cal or tube-like structures of toroidal flux were to arch

up through the visible solar surface, then the opposite

polarity of the sunspot pairs would be explained by the

oppositely-directed field in the legs of these arches where

they pierce the solar surface. Furthermore, it is plausi-

ble that some interaction of this emerging flux loop with

the background solar rotation could lead to a writhe of
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the structure that accounts for the Joy’s Law tilt. The

cyclic change in polarity would have to be imposed dur-

ing the origin of the field, requiring a reversal of the

toroidal field.

It has long been thought that strong toroidal field

is likely generated deep in the solar interior, towards

the base of the convection zone or in the tachocline,

where strong shear in the form of differential rotation

can amplify fields significantly. Since these processes

are far removed from the surface, magnetic buoyancy

is invoked as a transport mechanism between the two

regions (Parker 1975). The concept of magnetic buoy-

ancy can loosely be described as the situation where a

strong concentration of magnetic field contributes signif-

icant magnetic pressure to the total pressure. Under the

simple assumptions that the total pressure and the tem-

perature equilibrate quickly, this leads to a decrease in

the density associated with the magnetic concentration

that results in an upwards buoyant force. This process

can be cast more formally as an instability (Acheson

1979), and a great success of simulations of magnetic

buoyancy instabilities has been that they naturally ex-

hibit the creation of rising, arching, tube-like structures

of magnetic field, akin to what was envisaged for the

solar case (e.g. Matthews et al. 1995; Vasil & Brummell

2008).

Some of the more recent observations of magnetically-

active areas of the sun have focused on a relatively new

signature of the activity, namely, the magnetic helic-

ity of these regions (see e.g. Pevtsov et al. 2014, for

a complete review). Magnetic helicity is defined as

Hm =
∫
V
A · (∇ × A) dV . Here, B is the magnetic

field, and B = ∇ × A, so that A is a vector potential

defining the divergenceless magnetic field. Since A is

not uniquely defined, nor can it be directly measured in

observations, a more commonly-used measure is current

helicity, Hc =
∫
V
B · (∇×B) dV . The current helicity

is a measure of the twist, writhe and connectedness of

the magnetic field (see e.g. Moffatt 1969). These quanti-

ties are important for two main reasons. Firstly, Hm is

an invariant of the ideal MHD equations and thereby

provides strong constraints on those dynamics. Sec-

ondly, the release of energy from twisted magnetic field

is commonly cited as one of the major sources power-

ing eruptive events in the solar atmosphere (e.g. Low

1996; Amari et al. 2003; Nindos & Andrews 2004). The

origin of such twist is therefore important. Since Hc is

more measurable, it is often used as a proxy for Hm,

although it is unclear under what circumstances this is

useful (Seehafer 1990; Pevtsov et al. 1995; Abramenko

et al. 1997; Bao & Zhang 1998).

The most striking result from observations of the cur-

rent helicity in active regions is that, once again, such

dynamics seem to be remarkably ordered, considering

the turbulent environment through which the magnetic

structures emerge. It has been found that the sign of

the current helicity, when averaged over active region

areas, has a strong dependence on which solar hemi-

sphere it belongs to: in the Northern hemisphere, in

general the helicity is negative, whereas in the Southern

hemisphere, it is positive (see e.g. Pevtsov et al. 2014) .

This is a trend and not a strict rule, only being obeyed

approximately 60-80% of the time. However, this trend

is independent of which half of the 22-year solar cycle

is examined; that is, it is independent of the polarity of

the sunspots pairs, or the direction of the toroidal field

making up the sunspot structures. This set of rules is

known collectively as the Solar Hemispherical Helicity

Rule (SHHR).

The origin of this rule is clearly of interest, and there

have been a number of theories put forward. This paper

presents the most complete and dynamically-realistic

version to date of the dynamics postulated by one of

these potential theories, previously developed in Manek

et al. (2018) and Manek & Brummell (2021) (hereinafter

known as Papers 1 and 2). There are indeed other rea-

sonable theories apart from the one pursued here (see

e.g. Longcope et al. 1996; Choudhuri et al. 2004), and

it is entirely plausible, if not perhaps even likely, that

the processes conceived in each of these theories all con-

tribute to the overall helicity budget of a rising magnetic

structure to some degree. The introduction of Paper 2

contains more details and the pros and cons of each the-

ory, so they are not repeated again here. Instead, we

follow the theory of Papers 1 and 2 and examine the ro-

bustness of these ideas under conditions that are more

representative of solar conditions than were examined in

those earlier works.

The theory proposed in Papers 1 and 2 arises from

adopting a slightly different perspective from those used

previously in the modelling of the rise of structures by

magnetic buoyancy. In general, earlier work done in

this context has proceeded mainly along three fronts.

Firstly, there have been many studies of the rise of pre-

conceived, isolated, tube-like magnetic structures. Here,

the key point is that the structures are isolated in the

sense that they are embedded in an environment that

is free of other magnetic field. Such studies have been

performed under the thin flux tube approximation (e.g.

Spruit 1981) and, more realistically, where the tube has

a finite cross-section (e.g. Moreno-Insertis 1983, 1986;

Choudhuri 1989; D’Silva & Choudhuri 1993; Fan et al.

1993, 1994; Caligari et al. 1995; Longcope & Klapper
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1997). An interesting discovery here was that locally-

azimuthal field in the tube is required in order to cre-

ate twisted field lines that supply a centrally-directed

tension that provides coherence to the tube during its

rise (Moreno-Insertis & Emonet 1996). Without suf-

ficient twist, the tubes are ripped apart by the trail-

ing vortices they generate in their wake. The second

class of modelling efforts concerns true instabilities of

layers of magnetic field (see e.g. Acheson 1979; Cat-

taneo & Hughes 1988; Matthews et al. 1995; Vasil &

Brummell 2008). Here, magnetic structures are not ini-

tially present, but horizontal layers of magnetic field

containing sufficiently strong vertical gradients are un-

stable to magnetic buoyancy instabilities and therefore

evolve to produce such structures. Typically, tube-like

structures with a mushroom-like cross-section are cre-

ated, that can arch and kink in simulations if they are

three-dimensional. The final category is that of global

dynamo simulations. Some spherical shell simulations

at certain parameters show the production of strong

bands of toroidal field amid the convection, including

rising segments that again look similar to the concept of

emerging flux tubes.

It should be noted that both of the latter two cat-

egories can end up with the existence of concentrated

strong magnetic structures embedded in a large-sale

background field (usually the field from which the struc-

tures were created). This is contrary to many of the ear-

lier studies in the first category. The work performed in

Papers 1 and 2 was a simple attempt at examining the

different dynamics of magnetic concentrations embed-

ded in a volume-filling large-scale background field with-

out specifically having to be concerned about the process

that created the magnetic structures. To that end, Pa-

pers 1 and 2 examined the dynamics of a preconceived

flux concentration (often still colloquially referred to as

a “flux tube” for convenience) embedded in a chosen

background field in an initially quiescent, adiabatically-

stratified fluid layer. These numerical studies were per-

formed in a Cartesian 2.5D domain, where all three com-

ponents of vector fields are kept, but assumed to be in-

dependent of one horizontal direction (say, y), so that

only a two-dimensional domain (in the other horizontal

direction and the vertical, say x and z respectively) is

actually computed. This allows magnetic structures to

have twist in a two dimensional calculation. That is, the

structures are typically initially confined to a circular

region and contain both axial (y) and locally-azimuthal

field (in x and z). Papers 1 and 2 then also imposed

a horizontal (in x) magnetic field that had an assumed

variation in the vertical (z) so that the flux tube was a

structure embedded in this larger-scale field.

Papers 1 and 2 remarkably found that, for a certain

region of parameter space (termed the Selective Rise

Regime or SRR), there was a selection mechanism that

dictated different dynamics for differently twisted initial

tubes (relative to a fixed background field direction). It

was found that tubes that had twist such that the lo-

cally azimuthal field at the bottom of the tube aligned

with the background field had a tendency to be more

likely to rise than tubes whose twist was such that the

azimuthal field was aligned at the top. These selective

dynamics only occur for intermediate relative strengths

of the tube and the background field. If the tubes are

relatively weak, both signs of twist cannot rise; if the

tubes are relatively strong, both signs of tubes rise. If

the background field strength is between ∼ 5 − 15% of

the tube strength (roughly, for the other parameters con-

sidered in Papers 1 and 2), then one sign twist is rises

and the other does not. The reason for the existence

of the selection effect is the differential influence of the

background field on internal tension forces in the tube.

Where the background field and the locally-azimuthal

field of the tube align, the tension forces are increased,

and they are reduced where the two components are

anti-aligned. When the enhancement is at the bottom

of the structure and the reduction is at the top, a net

tension force acts upwards, in concert with the buoy-

ancy forces, enhancing the opportunity for rise. When

the alignment is the other way around, net tension forces

in the tube act downwards and oppose buoyancy, reduc-

ing the likelihood of rise. Most remarkably, if translated

into the solar context, the preferred signs of twist trans-

late into the correct helicities to obey the SHHR. Pa-

per 2 explored this selection mechanism and the SRR

in great detail, and included an explanation of the dy-

namics via a simple mathematical model. An intrigu-

ing point is that the existence of the SRR suggests that

violations to the rule are entirely plausible, if twist is

assumed to be created initially with some distribution.

Paper 2 confirmed this via synthetic SHHR maps gen-

erated from Monte Carlo simulations of multiple tubes

with random twist strengths and locations. The biggest

difference between this model and other theories is that

all the other theories essentially require a rising tube to

acquire the correct twist (by some method) as it rises.

In the models of Papers 1 and 2, instead, all signs of

twist are assumed to be created randomly (as seems to

be the case in simulations magnetic buoyancy instabili-

ties, see e.g. Matthews et al. (1995); Vasil & Brummell

(2008)) and then the selection mechanism acts as a fil-

ter, allowing a certain sign of twist to rise preferentially

(but with significant violations to the rule).
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The simulations examined in Papers 1 and 2 employed

highly simplified models of the background dynamics.

The magnetic structures simply buoyantly rose in an

initially quiescent, adiabatic fluid layer, and the large-

scale background field was artificially imposed as an

exponential function that decreased upwards. These

choices were supposed to represent the thermodynamic

background state that would result from a well-mixed

convective state and also the large-scale magnetic field

that would result from transport by convection in such

a state, even though the actual convection was not in-

cluded. This paper aims to relax these simplifications

and study the fully convective problem. Prevailing theo-

ries for the origin of emerging active region flux have flux

tubes formed most likely in the tachocline, and therefore

rising structures must traverse perhaps the upper radia-

tive zone, the overshoot zone and the convection zone

in their rise towards emergence at the surface. Here,

in this study, we model all of these zones, and examine

rise through them. However, we note that we still make

no attempt to model any process that creates the mag-

netic concentrations from the large-scale field since we

exclude the shear of the tachocline.

We do, however, pay great attention to modelling the

overshooting convection that should be present at the

base of the solar convection zone, and the magnetic

fields that might be associated with it. Overshooting

convection has been much studied in the astrophysi-

cal context (see e.g. Hurlburt et al. 1989; Zahn 1991;

Hurlburt et al. 1994; Singh et al. 1995; Brummell et al.

2002; Korre et al. 2019). When a convectively-unstable

layer is abutted by a convectively-stable layer, the mo-

tions of the convection are not confined to the convective

layer alone, and can “overshoot” into the adjacent stable

layer, where they are buoyantly decelerated. If the over-

shooting motions are sufficiently strong enough to mix

the thermodynamic background close to adiabatic in the

overshoot zone, the effect is termed “penetration” rather

than overshoot. There is much astrophysical interest in

the degree of overshoot and penetration since such mo-

tions imply extra mixing, and much attention has been

applied to the extent of such motions and mixing since

it may have a significant impact on stellar evolution.

A particularly intriguing magnetic effect also occurs in

overshooting convection. Magnetic field that exists on

much larger scales than the convective turbulence can

be expelled from the convective region to form a layer

at the edge of the overshoot zone, in a process known

generically as “magnetic pumping” (see e.g. Dorch et al.

2001; Tobias et al. 1998, 2001a; Korre et al. 2021). There

are a number of effects that can contribute to such ex-

pulsion but likely the dominant one is the transport of

large-scale field down a gradient of turbulent intensity.

This process has been characterized in mean-field mod-

els by the γ-effect (Rädler 1968). Clearly such a gra-

dient exists between the convection zone and the ra-

diative layer below the overshoot. The comprehensive

three-dimensional simulations of Tobias et al. (2001a)

showed that mean field would accumulate at the lower

edge of the overshoot zone even though there was a con-

stant circulation of smaller-scale magnetic field leaving

and arriving at the layer by magnetic buoyancy and ad-

vection effects. Such a layer was only slowly eroded by

diffusion and boundary effects.

This paper therefore extends the work of Papers 1 and

2 substantially in two main ways. Firstly, the magnetic

concentration evolves by magnetic buoyancy through

two vertically-stacked regions. The flux concentration

begins in a deeper layer that is initially convectively-

stable (representing a radiative zone, or a tachocline),

and then, if it buoyantly rises, it transits through a con-

vection zone. This is in contrast to the previous work

where the buoyant rise only transited through a single

quiescent adiabatic layer. Secondly, the presence of this

two-layer system of overshooting convection serves to

generate a self-consistent distribution of any imposed

large-scale background field by magnetic pumping. In

the previous works of Papers 1 and 2, the profile of the

background field was merely imposed artificially.

The structure of this paper is as follows: in § 2, we

outline our two-layer magnetoconvection model, includ-

ing the governing equations and the numerical methods

used; in § 3.1, we exhibit results from simulations only

incorporating overshooting convection in 2.5D in a sim-

ilar manner to the 3D results of Tobias et al. (2001b);

in § 3.2, we study under what conditions an isolated ris-

ing flux concentration is able to transit the overshooting

convection, as a pre-cursor to examining the effect of the

existence of a background field; in § 3.3, without any flux

tubes present, we examine the self-consistent rearrange-

ment of a large-scale (mean) horizontal magnetic field

by magnetic pumping in 2.5D in a similar manner to

the 3D simulations of Tobias et al. (2001b); in § 3.4,

for a canonical set of parameters, we combine the ac-

quired knowledge into simulations that study the rise

of a flux concentration in a two-layer overshooting con-

vective system incorporating a self-consistent large-scale

(mean) background magnetic field ; in § 4 and the full

paper we examine the influence of various parameters

of the model and check the statistical robustness of the

results. Ultimately, we draw conclusions in particular,

noting that the selection mechanism found in Papers 1

and 2 still operates in this far more complex situation.
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2. MODEL AND METHODS

This study extends the work of Papers 1 and 2. As

in those earlier works, this paper considers the evolu-

tion of a flux concentration in a large-scale background

field. However, this paper is substantially different in

two main ways. Firstly, the concentration (often referred

to as a “flux tube” merely for convenience) evolves by

buoyancy through two vertically-stacked regions. The

flux concentration begins in a deeper layer that is ini-

tially convectively-stable (representing a radiative zone,

or a tachocline), and then, as it buoyantly rises, it tran-

sits through a convection zone. This is in contrast to

the previous work where the buoyant rise only transited

through a single quiescent adiabatic layer. Secondly, the

presence of this two-layer system of overshooting convec-

tion serves to generate a self-consistent distribution of

the large-scale background field by magnetic pumping.

In the previous works of Papers 1 and 2, the profile of

the background field was merely imposed artificially.

We use the formulation used in Tobias et al. (2001b) to

establish two layer overshooting convection with a large-

scale background field. In our initial study of the prob-

lem here, we consider a 2-D Cartesian domain (x, z),

that contains a fully compressible ideal gas confined be-

tween two horizontal, impenetrable, stress-free bound-

aries. We keep all three components of the velocity and

magnetic vector fields, but all components are indepen-

dent of the missing third direction (i.e. ∂/∂y = 0). This

type of setup is often referred to as 2.5D. The Cartesian

box is xmd wide and zmd deep, where d is the depth of

the convection zone in the two layer system. We non-

dimensionalize our system using d, T0 (the temperature

at the upper boundary), ρ0 (the density at the upper

boundary) and B0 (some measure of the initial field

strength) as our units of length, temperature, density

and magnetic field strength. The thermal sound cross-

ing time at the top of the domain, (d2/((cp − cv)T0))
1/2,

is our unit of time, where cp and cv are the specific heats

of the fluid at constant pressure and constant volume re-

spectively (and their ratio γ = cp/cv will be used later).

With these units, the governing non-dimensional equa-

tions (the conservation of mass, momentum and energy,

the equation of state for a perfect gas, the induction

equation and the divergence-free condition for magnetic

fields) are (Tobias et al. 2001b)

∂tρ+∇ · (ρU) = 0, (1)

∂t (ρU) +∇ · (ρUU− αBB) =

−∇pt + σCk

[
∇2U+

1

3
∇(∇ ·U)

]
+ ρgẑ, (2)

∂tT +∇ · (UT ) + (γ − 2)T∇ ·U =

γCk

ρ
∇ · (κz∇T ) +

ζCkα(γ − 1)

ρ
|∇ ×B|2 + Vµ, (3)

∂tB = ∇× (U×B) + Ckζ∇2B, (4)

∇ ·B = 0, (5)

pt = pg + pm = ρT + α
|B|2

2
. (6)

Here, in nondimensional form, U = (u, v, w) is the

velocity, B = (Bx, By, Bz) is the magnetic field, T

is the temperature and ρ is the density. Note again

that all quantities are only functions of (x, z) (where z

varies downwards from the top). The total pressure,

pt, is the sum of the gas pressure, pg (= ρT for an

ideal gas), and the magnetic pressure, pm = α|B|2/2,
where α = σζQC2

k (where the latter parameters will

be explained shortly). The rate of viscous heating is

Vµ = (γ − 1)Ck ρσ∂iuj(∂iuj + ∂jui − (2/3)∇ ·Uδij).

Our two layer system consists of a convective layer

(layer 1) overlying a convectively-stable layer (layer 2).

This layering is enforced by a piecewise constant ther-

mal conductivity (with a narrow smoothed junction be-

tween the two layers) that defines the two layers as being

piecewise continuous polytropes when in a hydrostatic

state. Since the total hydrostatic heat flux through the

domain must remain the same at any depth, the ther-

mal conductivities, κi, in the two layers can be described

by the parameter S = (m2 −mad)/(mad −m1), related

to the polytropic indices in the two layers, mi, and the

adiabatic index mad = 1/(γ − 1) (= 1.5 for an ideal

monatomic gas where γ = 5/3):

κ2

κ1
=

m2 + 1

m1 + 1
=

S(mad −m1) +mad + 1

m1 + 1
. (7)

We choose m1 = 1 always, and specify the temperature

gradient in the hydrostatic upper layer as θ. The relative

stability of the two domains is then measured by S, of-

ten referred to as the stiffness parameter (Hurlburt et al.

(1994); Brummell et al. (2002)). Increasing S increases

the relative stability (“stiffness”) of the lower layer. Fig-

ure 1 shows the polytropic temperature and density pro-

files versus depth in the two layers for the three values

of S that we use in these simulations, S = 3, 7 and 15.
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The other dimensionless parameters that govern the

system are as follows. The Rayleigh number,

Ra(z) =

θ2(mi + 1)

σC2
kz

(
1− (mi + 1)(γ − 1)

γ

)
(1 + θz)2mi−1, (8)

is a derived measure that evaluates the competition be-

tween buoyancy driving (given in terms of the stratifi-

cation inputs θ and mi) and diffusive effects. This is

therefore a measure of the the supercriticality and vigor

of the convection. The Ra involves the non-dimensional

thermal conductivity Ckz = Ckκz, where κz = κi/κ1

and Ck = κ1/{dρ0cp[(cp − cv)T0]
1/2}. which is different

in the two layers. The Ra is a function of depth, and,

in this study, the quoted value of Ra is evaluated at the

middle (z = 0.5) of the unstable upper layer under the

conditions of the initial polytrope.

The Prandtl number at a given depth is

σz =
µcp
κz

, (9)

where µ is the (constant) dynamic viscosity. The

Prandtl number is depth-dependent, but Ckz
σz = Ckσ

is independent of κz and therefore is independent of

depth. Any quoted Prandtl number is σ (the value in the

upper layer). Similarly, the non-dimensional magnetic

resistivity is controlled by a depth-dependent Schmidt

number

ζz =
ηcp
κz

, (10)

but Ckz
ζz = Ckζ is independent of depth, and any

quoted value is ζ.

The Chandrasekhar number,

Q =
B2

0d
2

µ0µη
, (11)

where µ0 is the magnetic permeability, is a measure of

the strength of the imposed magnetic field B0 compared

to diffusive effects. Note that the parameter truly gov-

erning magnetic effects is α = σζQC2
k . This parameter

determines the dynamic ratio of the gas pressure to the

magnetic pressure, and is often referred to as the plasma

β. Increasing Q (for fixed diffusivities) increases the dy-

namical back-reaction of any magnetic field on the flow

field.

At the upper and lower boundaries of our domain, we

apply impenetrable and stress-free boundary conditions

w = ∂zu = ∂zv = 0 at z = 0, zm, (12)

which ensure that the mass flux and mechanical energy

flux vanish on the boundaries conserving the total mass.

The boundary conditions on temperature are

T = 1 at z = 0, ∂zT = κ2

κ1
θ at z = zm, (13)

therefore the imposed heat flux is the only flux of en-

ergy into and out of the system. The magnetic boundary

conditions are specified as

Bx = By = 0 at z = 0, zm. (14)

Note, that it is sufficient to impose boundary conditions

only on the horizontal components of the magnetic field

due to the solenoidality of B. We note that non-zero

vertical gradients of the horizontal field can be present at

the boundaries so that the magnetic energy can decrease

with time, i.e. these can be “run-down” systems.

The domain is periodic in the horizontal in all vari-

ables.

This system is solved numerically using the same code

and same pseudo-spectral methods as in Tobias et al.

(2001a). The resolution typically used is 512 × 600 for

the 6× 2.5 aspect ratio 2D domain.

3. RESULTS

In order to achieve our goal of examining the effect of

a self-consistent large-scale background field on the rise

of a magnetic concentration through a convection zone,

we must first complete some preparatory steps. First of

all, we need to establish overshooting convection in our

two layer system representing the base of the convection

zone. Secondly, we must examine what strength of a

flux tube is required for it to have enough buoyancy to

rise through this convection. Thirdly, we must establish

a vertical profile of pumped large-scale (mean) horizon-

tal field with this overshooting convection (without the

flux tube) to act as our self-consistent background field.

Finally, we can then evolve the flux tube as a concen-

tration amongst the volume-filling pumped background

field in the convective simulation and examine the effect

of that background field on the different signs of twist in

the tube/concentration. We now describe each of these

steps in detail.

3.1. Convection in 2D

We choose some canonical parameters for our study

as follows. Our two-dimensional Cartesian box is of size

xm = 6, zm = 2.5 so that our convection zone (of depth

unity) has an aspect ratio of 6, allowing plenty of room

for convective cells, and so that the domain has plenty

of room for overshooting. For purely hydrodynamic

convection, we only solve equations 1, 2, 3 (under the

ideal gas equation of state) as an initial value problem.

Throughout this study, we canonically use Ra = 4×104
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Figure 1. Profiles of polytropic thermodynamic initial conditions, a) T , and b) ρ, as a function of depth z at x = 0 for S = 3, 7
and 15. The dashed line marks the transition between the convection zone and the radiative zone.

and Pr = 0.1, in order to achieve reasonably super-

critical dynamics at a Prandtl number less than unity.

These values are in the correct regime for astrophysical

purposes, but are orders of magnitude away from their

true astrophysical values due to numerical limitations.

We set the stratification using m1 = 1 and θ = 10 and

choose S from the values S = 3, 7, 15. These choices of

S provide a range of overshooting dynamics from deep

to fairly confined, as we shall see shortly. For much of

this paper, we use S = 7 as the canonical value, but all

S are investigated and described in detail.

The time evolution of these equations from initial con-

ditions consisting of a small amount of thermal noise

in the convectively unstable layer sets up convection

in the layer which can then overshoot into the lower

convectively-stable layer. As an example, the time evo-

lution of total kinetic energy in the simulation domain

for the case with S = 7 is shown in Figure 2. An initial

increase in the kinetic energy characterizes the forma-

tion of convection in the unstable layer, and, eventually,

the kinetic energy settles to a statistical-steady (station-

ary) state.

Figure 3 shows snapshots of the vertical velocity (w)

in the simulation domain at four different times during

this evolution (t ∼ 24, 26, 71, 288). We can see in Figure

3a that the initial evolution is marked by the forma-

tion of a cellular pattern of roughly five cells of convec-

tive motions, characterized by narrow downflows (blue)

and broader upflows (red). As the convection ramps up,

Figure 2. Kinetic energy as a function of time for the case
with S = 7, Ra = 4× 104 and Pr = 0.1.

these more regular cellular patterns (probably related

to the linear eigenfunctions) quickly evolve into more

turbulent nonlinear dynamics, consisting of more time-

dependent plumes that begin to overshoot into the sta-

ble layer below, as seen in Figure 3b. During the later,

more characteristic, evolution, as shown in Figures 3c

and d, plumes can form, migrate, split or merge, and

the flows have established a strong identity in the stable

layer, connected to the convective layer, as if there were
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Figure 3. Vertical velocity (w) snapshots plotted at 4 different times for the case with S = 7, Ra = 4 × 104 and Pr = 0.1.
Blue color indicates downflows whereas upflows are red. The dashed line marks the transition between the convection zone and
the radiative zone.

no boundary between the two regions, which is what we

term “overshooting”.

The depth to which this overshooting occurs is a topic

of great interest in astrophysics and has been studied in

detail in both 2D and 3D (e.g. Hurlburt et al. (1989,

1994); Brummell et al. (2002)). This overshooting depth

depends on many of the parameters, Ra, Pr, S and its

scaling with these parameters is of great interest to as-

trophysics, but here we concentrate on the effect of the

the relative convective stability of the two layers, quan-

tified by the parameter S (introduced by Hurlburt et al.

(1994), defined in Section 2). Increasing S increases the

relative stiffness of the stable layer since we have fixed

the stratification of the upper layer. By “stiffness” here,

we mean the resistance to convective motions entering

the layer, in the sense of the buoyant deceleration. For

greater S, due to the more rapid increase in density in

the stable region (as can be seen in Figure 1), a plume

entering this region feels a larger (negative) density per-

turbation and therefore decelerates more rapidly than it

would at lower S.

The level to which the convection penetrates the sta-

ble region can be quantified by examining the time- and

horizontally-averaged kinetic energy flux (over a rep-

resentative time in the stationary state of the convec-

tion), as shown in Figure 6. The overshoot depth is

often taken to be the depth at which the kinetic energy

has reached a fraction of its maximum value, typically

1% (e.g. Hurlburt et al. 1994; Brummell et al. 2002).

This value reflects where, on average (both in time and

space), the convective motions die out. Figure 6 shows

this average kinetic energy profile for the three different

values of S, (S = 3, S = 7 , S = 15). We can clearly

see that the overshoot depth decreases as S increases,

as has been found many times before. The overshoot

depths are zo = 2.08, 1.63, 1.55 for S = 3, 7, 15 respec-

tively. This result is an average over many instantaneous

realizations, such as those shown as examples in Figure
4, which shows the vertical velocity (as for Figure 3) at

a representative time in each of the S = 3 and S = 15

cases. In this Figure, it can clearly be seen that the

dynamics are active much deeper in the stable layer for

S = 3 (down to at least z = 2) and less deep (down to

z = 1.4 or so) for S = 15, when compared to the case

at S = 7 in the earlier figure. The scaling of the over-

shoot depth with S is of interest, but here we are more

concerned with creating initial conditions for the later

parts of our study.

We add a quick note regarding “overshooting” convec-

tion versus “penetrative” convection. If the dynamics in

the overshoot layer below the convection zone are suffi-

ciently energetic to mix the stable region strongly, driv-

ing it towards a well-mixed adiabatic system with a con-

stant entropy, then the “overshooting convection” be-
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Figure 4. Vertical velocity (w) snapshots for (a) S = 3 and (b) S = 15.

Figure 5. Time- and horizontally-averaged entropy as a
function of height for S = 3, 7, and 15.

comes known as “penetrative convection” (Zahn 1991).

All our cases here are overshooting convection and

not penetrative convection. Figure 5 shows the time-

averaged entropy for the three cases. We can see that

significant mixing has not occurred below the convection

zone, since there is still a strong entropy gradient below

z = 1.

3.2. Rise of Flux tubes in Pure Convection

Having established a purely convective background

state, we now wish to understand under what condi-

tions a flux tube is able to rise through such a state in

the absence of any large-scale volume-filling field. We

need to do this since we are interested in effects on the

flux tubes that would otherwise emerge buoyantly at the

Figure 6. Time- and horizontally-averaged kinetic energy
flux as a function of z for three different cases, S = 3, 7, and
15. The horizontal dashed line at z = 1 marks the transition
between the convection zone and the radiative zone. Over-
shooting depth is the z-location at which the curves meet the
y-axis in the stable region.

top of the convection zone. We therefore now turn to

MHD simulations where we add an isolated flux tube to

established convection. Again, similar simulations have

been performed before, for example, in 3D for fully com-

pressible and anelastic convection Cline (2003); Abbett

et al. (2004). A discovery of this past work has been

that magnetic structures need to possess magnetic en-

ergy greater than the peak kinetic energy of the flow to

survive transit of the convection zone. Here, we need to

establish exact values for our particular setup to inform

later, more complete and complex simulations including

a large-scale background field.
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The initial setup for these cases consists of an instance

in time from the stationary state of one of the overshoot-

ing convection simulations, such as those in Figures 3c,d

or 4). To this state, we add a twisted magnetic flux tube

embedded at a chosen location in the stable zone (see,

for example, Figure 7a or 8a). The total magnetic field

of the flux tube is given by

B = (Bx, By, Bz) = Btube =(
− 2q

(zc − z)

ro
, 1− r2

r2o
,−2q

(x− xc)

ro

)
for r ≤ ro (15)

where q is the initial twist of the field, xc and zc are

the horizontal and vertical locations of the center of the

flux tube, ro is the outer radius of the structure, and

r = ((x− xc)
2 + (z − zc)

2)1/2 is the cylindrical radius

measured from the center of the tube. Note that the

field is purely axial at the center of the flux tube and

the amplitude there is unity. With |q| = 0.5, the az-

imuthal field in the tube is unity at r = r0. We only

examine |q| = 0.5 in this study, and in this Section of

the work, the sign of q does not matter, since there is

no background field against which its orientation can be

judged. We choose xc = 3, zc = 2 as the standard initial

location, and we adopt ζ = 0.001 from now. The lat-

ter value is small so that tubes, which can have strong

gradients at the edges, do not diffuse too quickly, i.e.

other dynamical times of interest, like the buoyant rise

time, are quicker than the time to diffuse the flux tube

magnetic perturbation. This value renders the magnetic

Prandlt number Pm = σ/ζ = 100 which is not repre-

sentative of astrophysical values that are typically less

than one. This is a statement that our simulations are

too viscous and therefore not as turbulent as they should

be, but this is a numerical limitation. At this point, we

only examine S = 7 and leave the study of the effects of

varying S later.

The canonical set of governing parameters is therefore

now S = 7, Ra = 4× 104, P r = 0.1, ζ = 0.001. We are

left to vary the Chandrasekhar number, Q, as the key

parameter of interest. With unit maximum amplitude

of both the axial and azimuthal fields of the flux tube,

the Chandrasekhar number entirely determines the ini-

tial strength of the magnetic field (in this case, the flux

tube) and determines the dynamical influence (via α)

of the Lorentz force (see equation 2). When we add

the flux tube to the existing fields, we do so assuming

that the total pressure and the temperature equilibrate

quickly, so that the increase in magnetic pressure is en-

tirely compensated for by a drop in density. This means

that the initial condition is not in equilibrium and the

tube experiences an initial upwards buoyancy force.

Figure 7 shows the evolution of the full set of Equa-

tions 1-6 for such an initial state. This Figure shows

intensity plots of the normalized axial field, By, which

is a good indicator of the location of the tube, overplot-

ted with the normalized vertical velocity, w, representing

the convective flows. We use the absolute maximum val-

ues of By and w as the normalizing factors for the axial

field and vertical velocity, respectively. The case shown

is at the canonical parameters, for a positively-twisted

flux tube with Q = 2×108, and the Figure displays four

different times. Figure 7a shows the initial location of

the cylindrical flux tube at (xc, zc) = (3.0, 2.0) deep in

the stable region, along with the overshooting convective

motions. Here, red and blue colors indicate upflows and

downflows respectively. As the flux tube starts rising

due to its magnetic buoyancy, the initial rise is reason-

ably symmetric, and quickly becomes accompanied by

the formation of vortices, a characteristic reminiscent

of non-convective flux tube rise (Fig. 7b). The impact

of overshooting convection on the dynamics of the flux

tube is minimal at this stage. As the flux tube enters the

overshooting region (0 ≤ z ≤ 1.5) and gets closer to the

transition between the stable and convective layer, the

effect of convective motions becomes evident on the flux

tube. Figure 7c shows that the flux tube is located be-

neath a downflow. The symmetric rise of the flux tube

is broken, as buoyant and advective forces act on the

tube, and the driving vortices are stretched. However,

due to sufficient initial twist (|q| = 0.5) and sufficient

buoyant (∝ Q), the flux tube maintains coherency and

navigates its way into an upflow and thereby to the top

of the convective simulation domain (Fig. 7d). We con-

sider these dynamics as a successful rise of the flux tube

(but will develop a more quantitative measure later)
Figure 8 represents a case similar to Figure 7 but for

a lower Q. The simulation starts from the same initial

steady-state convection and initial magnetic profile, al-

beit now with Q = 5 × 106 ( Figure 8a). With a weak

buoyancy perturbation due to lower Q, the initial rise

of the flux tube is very slow. Figure 8b shows that the

flux tube barely rises in the stable zone with no dis-

tinct vortices forming. The slow rise brings the tube

to the edge of the overshooting region (z ∼ 1.5 where

even these weak flows distort the cylindrical flux struc-

ture (Fig. 8c). Eventually, other forces dominate over

buoyancy and the flux tube gets stretched, and its rise

is halted (Figure 8d). We consider this is an example of

an unsuccessful rise of the flux tube. Even with mini-

mal interaction with the overshooting, the buoyancy was

insufficient to enable a rise.
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Figure 7. Intensity plots of normalized By, overplotted with the normalized vertical velocity, w, as a function of time for the
case with S = 7, Ra = 4×104, Q = 2×108, Pr = 0.1 and Pm = 100. The initial location of the flux tube is (xc, zc) = (3.0, 2.0).
The dashed horizontal line indicates the transition between the convection zone and the radiative zone.

Figure 8. Same as Figure 7 but for Q = 5× 106.
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It is reasonable then, in this study, to conclude that

the rise or non-rise of the flux tube is determined by the

amount of buoyancy (controlled by Q) imparted to the

flux tube (for fixed other parameters). We now explore

a wider range of Q to understand this dependence in

more detail. To determine the ultimate fate of a flux

tube more concisely, we turn to a more quantitative and

explicit measure of the rise characteristics, denoted by

zft(t), that tracks the z-location of the maximum of the

axial field, By, as a function of time. From Figures 7

and 8, it is clear that this quantity tracks the progress

of a tube reasonably well.

Figure 9 shows zft(t) for a range of simulations that

were initiated identically but for varying Q. A rela-

tively lower Q leads to an almost neutrally buoyant

flux tube that does not rise and remains embedded in

the stable zone (Q = 5 × 106, 1 × 107; red and green

markers). A relatively middling value of Q, for exam-

ple, Q = 4 × 107 (blue markers) leads to a slow rise

of the flux tube through the stable zone and into the

convection zone, where it experiences some substantial

variations due to interactions with upflows and down-

flows but nevertheless rises. With higher Q values, the

flux tube rises quickly through the both the stable zone

and the convection zone to the top of the domain (e.g.

Q = 8×107, 2×108; magenta and black markers). In this

plot, the black marker corresponds to the Q = 2 × 108

case discussed in Figure 7 and the red marker corre-

sponds to the Q = 5 × 106 in Figure 8. Note that we

curtail such plots, stopping following the tube either af-

ter it reaches the top of the simulation domain or when

it has become clear that a tube has stopped rising.

From this information, we choose to use Q = 2× 108

as the value of Q for our canonical set of parameters

used in the next sections. Our aim is to evaluate the

effect of the sign of twist in conjunction with a large-

scale background field on emergent tubes. This case

provides a clear and definite emergence in the absence

of such effects. It can be interesting to examine other

cases too, and this will be done later in this paper when

examining different S.

At this point, it is important to realize that here the

sign of the twist of the flux tube does not make a dif-

ference to the dynamics. The evolution and fate of

a positively-twisted flux tube and a negatively-twisted

flux tube inserted into convection without any back-

ground field is the same. This is illustrated by Figure

10) which shows zf t for two tubes with opposite signs

(panel a), and a snapshot of the simulation at a late

stage for a negatively-twisted tube which can be com-

pared with that shown for a positively-twisted tube in

Figure 7d. Clearly, the dynamics are very similar, and

Figure 9. The maximum of By as a function of time zft
for different Q. Other parameters are Ra = 4 × 104, P r =
0.1, ζ = 0.001, q = 0.5, and S = 7.

the twist serves mainly to maintain the coherence of the

tube. We will show that this symmetry is broken by the

inclusion of a background field in later sections of this

paper.

3.3. Dynamical formation of Background Magnetic

Field

Papers 1 and 2 explored the effect of a background

magnetic field on the rise of flux tubes by artificially

imposing the background field as a function that de-

creased exponentially with height. The authors of those

papers argued that the turbulent convective pumping of
large-scale magnetic fields (see e.g Tobias et al. 2001b)

would likely achieve some profile of the background field

where the majority of the field was confined below the

convection zone. The exponential profile was their at-

tempt at a simple model of part of this profile. In this

section of this paper, as part of the setup of our initial

state for the ultimate simulations, we explore the self-

consistent formation of a large-scale background mag-

netic layer by magnetic pumping due to the presence

of the overshooting turbulent convection, instead of as-

suming its existence, as in the previous work. Again,

simulations of this type have been performed before (see

e.g Tobias et al. 2001b) and transport of magnetic field

out of convection zone into a stable layer down a gradi-

ent of turbulent intensity is fairly well-understood. Our

aim here is simply to create self-consistent initial con-

ditions for the large-scale background field, rather than
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Figure 10. Comparison of the dynamics of positively- and negatively-twisted tubes for Q = 2× 108 (a and b) and Q = 4× 106

(c and d): (a) zft plotted as a function of time for both q = 0.5 and q = −0.5, (b) The equivalent of Figure 7d but for q = −0.5,
(c) zft plotted as a function of time for both q = 0.5 and q = −0.5, (d) The equivalent of Figure 8d but for q = −0.5.

artificial ones. Since the selection mechanism discovered

in Papers 1 and 2 depends on the relative strengths of

the tube and the background field, our goal here is to

be able to control the amplitude of the profile of the

pumped field to explore this relationship.

We start with a steady-state pure convection solution

from Section 3.1 and impose a thin horizontal magnetic

layer concentrated in the convection zone. Note that,

in this Section, no flux tube is imposed. The magnetic

layer is given by

B = (Bx, By, Bz) = Blayer =(
tanh

(z − zbot
δ

)
tanh

(ztop − z

δ

)
, 0, 0

)
for zbot ≤ z ≤ ztop (16)

where ztop and zbot are the top and bottom location

of the layer respectively, and δ is the smoothing width

of the edges of the layer. For a standard initial condi-

tion, we use a layer where zbot = 0.80, ztop = 0.75 and

δ = 0.01. The other parameters remain at the canonical

values (Ra = 4 × 104, Pr = 0.1, and ζ = 0.001) and

we can again choose Q to determine the initial strength

of the magnetic layer. This, in turn, affects the initial

magnetic buoyancy of the layer, since we again adjust

the background thermodynamic state to maintain total

pressure and temperature equilibrium, as in the previ-

ous section. We have experimented with omitting the

thermodynamic adjustment to avoid certain numerical

issues, and found that this makes little difference, since

the code adjust pressure balance very quickly.

The choice of Q is a little complicated for the follow-

ing reasons. In Section 3.2, we established that a flux

tube with Q = 2× 108 rises through the convection and

therefore we will need to run our ultimate simulations

(involving both flux tubes and background field) at this

Q value. The work of Paper 2 showed that the key fac-

tor in the selection mechanism was the relative values

(and orientation) of the azimuthal field in the tube and

the background field strength. The former is initially

dictated by q and can be different from the axial field

strength of unity. However, our choice of |q| = 0.5 makes



14 Pontin et al.

the peak azimuthal field also conveniently equal to unity,

and therefore, both of these quantities are governed by

the value of Q. However, we wish to be able to control

the relative strengths of the azimuthal field in the tube

and the background field in order to explore the regimes

of Paper 2. From that previous work, we expect the

background field strength to be between roughly 5% –

20% of the tube strength for the selection mechanism of

Papers 1 and 2 to manifest. We therefore need to be

able change either the resultant azimuthal field strength

or the resultant background field strength at a fixed Q

to be able to realize this ratio. We could achieve this by

varying |q|, but instead we choose to control the resul-

tant strength of the evolved background field (in order

to avoid having to repeat the simulations of the previ-

ous section many times). This is not particularly arti-

ficial, since any pumping calculation with the magnetic

boundary conditions specified (Equation 2) runs down

anyway, so that the magnetic field amplitude decreases

from unity to some significantly lower value. Changing

the initial layer amplitude allows any chosen final am-

plitude to be realized. In essence, there is an effective Q

of this run-down state that we can control, given by the

square of the amplitude of the state times the original

Q: Qeff = Q|B|2.
With this in mind, we purposely start our pumping

simulations with a lower Q (= 4 × 106) in this setup.

This allows a two-fold flexibility. Firstly, at large Q,

strong field can quickly accumulate at the upper bound-

ary causing numerical problems; lower initial Q can

avert this unphysical issue. Secondly, after evolving the

system at lower Q, we can evaluate the peak amplitude

of the final horizontally-averaged profile, and then scale

this state to whatever peak amplitude we desire, essen-

tially adjusting the Qeff . We can then take this as an

initial condition, and run at the higher Q (the canonical

Q that we must use when a tube is eventually present in

the next Section) until it relaxes into the pumped state

for that value. This process is equivalent to running at

different amplitudes of the initial layer at fixed Q (and

therefore different Qeff) but allows us to have fast access

to a pumped state with a controllable peak amplitude

of the profile.

We illustrate this whole process with Figures 11 and

12. Figure 11 gives a good impression of the magnetic

pumping process by showing snapshots of the horizon-

tal magnetic field Bx (normalized by its maximum) as

a function of time in the simulation at the canonical

parameters. The initial magnetic layer can clearly be

seen in Figure 11a. Panel b exhibits the early evolution

of the layer, showing that these are dominated by the

competing effects of magnetic buoyancy and downward

transport of flux caused by advection in the convective

plumes. Some sections of the layer rise by the combined

effects of the magnetic buoyancy of the layer and up-

flow advection, whereas some sections get dragged to-

wards and into the stable layer, in strong downflows

where advection overcomes the buoyancy. After this

initial adjustment, the advective churning of the field

dominates, as can be seen in panels c-d. At this stage,

the small-scale turbulent interactions with the magnetic

field dominate, leading to the turbulent transport mech-

anism of magnetic pumping. The overshooting convec-

tive motions therefore transport magnetic flux to the

stable region, as seen in Figure 11e-f. The pumped fields

slowly accumulate at the edge of the overshoot region,

where their residual magnetic buoyancy is balanced by

the pumping mechanism.

In panels g-h of Figure 11, we show an example of

the adjustment of the peak amplitude of pumped field.

We evaluate the peak strength of the current pumped

layer by calculating a time average of the horizontal

field. Due to the influence of magnetic diffusion and

vertical boundary conditions, the peak strength of the

pumped layer has diminished considerably from the ini-

tial value of unity. We re-scale the magnetic fields in

the whole simulation domain by a chosen scaling fac-

tor. If required, we can also adjust the Chandrasekhar

number of the simulation at this point to the canoni-

cal value of Q = 2 × 108. We then further evolve the

new system, treating the scaled magnetic field as a new

initial condition, over many convective turnover times.

This allows the system to relax to a new dynamically-

consistent pumped magnetic layer, as shown in Figure

11g-h.

It should be noted that even though the pumped

magnetic layer in Figure 11h (for example) looks fairly

smooth, thanks to the considerably higher value now of

the peak in the pumped layer, there are considerable lo-

cal variations if we check the vertical profiles of the layer

at different horizontal locations. In Papers 1 and 2, the

artificially-imposed background field was uniform in the

horizontal direction, whereas here, the self-consistently

generated pumped field state is not. In order to make

contact between the two different works, we here calcu-

late (and use for comparison) the time- and horizontal-

average of the horizontal magnetic field Bx. First, we

show as Figure 11 the time evolution of the horizontally-

averaged field for various stages in the calculation shown

in the previous Figure. For each time portion, the initial

and final state is shown as a thicker line, and the thin-

ner lines show regular time intervals between these end

points. Panel a again shows the initial dynamics where

the profile evolves from the initial layer located between
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z = [0.7, 0.8]. Initially, it can be seen that the profile

relaxes in shape and amplitude somewhat, and moves

upwards due to magnetic buoyancy and starts to accu-

mulate at the top. At the same time, some of the average

field gets moved towards the lower stable layer, creating

a second accumulation peaked at around z = 1.4. In

panel b, later in time, we see that on average, the field

starts to be evacuated from the upper boundary and

the interior of the convection zone. The peak around

z = 1.4 becomes (relatively) more prominent, but also

a second peak around z = 1.8 starts to form, just below

the overshoot region. This latter peak is the progenitor

of the pumped layer, as can be seen in panel c, where,

as time progresses, this peak becomes the dominant dy-

namical feature in the average field. Panel d shows how

we control the amplitude of the pumped field. Here, we

have taken the end result of the earlier calculations, and

rescaled the pumped field by a chosen factor (a factor of

20 in this case) and continued the evolution. It can be

seen that this achieves a stable profile of pumped field on

average, with a peak amplitude of about 0.2. This type

of state is what we desire as an initial condition for later

calculations also containing a flux tube with peak field

amplitude of unity. Such a profile provides the ratio of

amplitudes where the background field is at about peak

amplitude of 20% of the tube peak amplitude. It should

be noted that pumped profile can still evolve and run

down due to the magnetic boundary conditions. How-

ever, this evolution is in general very slow compared to

other dynamics that we are interested in (such as the

rise time of a flux tube) and therefore can be consid-

ered essentially steady. As can be seen in panel d, this

is because the profile can evolve such that there are no

gradients of the (average) field at the boundary (espe-

cially at higher S than is shown in this case: see later)

and/or the profile becomes essentially piecewise linear

with very little diffusion acting (except at the junctions

of the piecewise profile).

Figure 13 shows the final time- and horizontally-

average state of the pumped field as a function of height

at the canonical parameters with Q = 2 × 108. This

is the state that we will use for the next Section. The

peak strength of this pumped layer is about 0.21, or

21%, compared to a unit strength flux tube. The filled-

diamond markers are placed to indicate the locations

where the average field strength is 1, 2.5, 5, 10, 15,

and 20% on the upslope section of the pumped layer.

We will use these locations from this layer in the next

Section.

3.4. Rise of Flux tubes in the presence of a

Background Field

We now come to the main point of this paper and

examine the dynamics of the rise of magnetic flux tubes

in the presence of convection and a background magnetic

field. We take the setup we arrived at in Section 3.3,

where we have statistically steady-state convection with

a self-consistent magnetic field in the form of a layer in

the stable zone. To this we introduce a flux tube. The

total magnetic field is then given by

B = (Bx, By, Bz) = Btube +Bpumped (17)

where Btube is the field of a tube as in Equation 15

and Bpumped is the field resultant from the end of the

simulations in the previous Section 3.3. In this Section,

we consider flux tubes with both positive (anticlockwise)

and negative (clockwise) twist, q, with a fixed magnitude

|q| = 0.5. The other parameters are the canonical set:

Ra = 4 × 104, Pr = 0.1, ζ = 0.001, S = 7 and Q =

2× 108.

There are a few important points to note at this stage.

Firstly, introducing a flux tube, Btube, again requires a

thermodynamic perturbation in the background stratifi-

cation for consistency, as in the case when there was no

large-scale background magnetic field already present.

As before, we choose to adjust the density whilst main-

taining the current temperature in the tube. This im-

parts an initial magnetic buoyancy to the tube, as was

the case in the absence of a background magnetic field.

The pumped layer, Bpumped, is already dynamically con-

sistent with the background stratification (see Section

3.3) and the thermodynamics do not need to be adjusted

for this component.

Secondly, as determined in detail in Paper 2, the rel-

ative strengths of the twist of the tube and the back-

ground field are the key determining factors in the differ-

ential evolution of differently twisted flux tubes. Here,

we have fixed the strength of the tube (via its unit max-

imum axial field strength and fixed twist value, q) and

are left with two controls over the relative strength of

the background field. One control is that we can adjust

the peak amplitude of the pumped layer as described

in the previous section. The other control is that, even

for a given peak amplitude in the initial condition for

Bpumped, we can adjust the depth at which the flux tube

is introduced, thereby determining both the background

field value that the tube experiences initially and the

amount of pumped background field the tube experi-

ences during transit upwards.

Our strategy here initially is to select a case from the

previous section where the peak amplitude of Bpumped

lies in realm where Paper 2 predicted that a selection

mechanism may occur. We then select particular depths

at which the flux tube is introduced into the pumped
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Figure 11. Snapshots of normalized horizontal magnetic field, Bx, as a function of time. (a)-(f) have Q = 4 × 106 whereas
(g)-(h) have Q = 2× 108.
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Figure 12. Time- and horizontally-averaged pumped horizontal field as a function of height (z) for the case with S = 7. Initial
and final profiles are plotted with a thicker line in each of the subplots. (a) shows the initial pumping of the imposed magnetic
layer. The final profile of the pumped field is multiplied by a factor of 20 and its evolution is shown in (d).
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Figure 13. Time averaged pumped horizontal field as a
function of height (z) for the case with S = 7. Black diamond
markers indicate the different z-coordinates centred at which
flux tubes are introduced. These z-coordinates correspond to
1, 2.5, 5, 10, 15 and 20% strength of the pumped horizontal
field as compared to the flux tube strength. The dashed line
marks the transition between the convection zone and the
radiative zone.

magnetic layer in order to vary the precise ratio of the

twist field in the tube to the averaged pumped field

strength (see diamond markers in Fig. 13). We in-

vestigate the details of varying the peak amplitude and

related local effects later. We initially choose all the

locations of the introduction of the flux tube to be on

the upper side of the pumped layer. We do this be-

cause we assume that flux tubes are likely to be formed

by magnetic buoyancy instabilities, which require that

the magnetic field increases sufficiently strongly down-

wards, therefore the most likely initiation of tubes is on

the upper side of the pumped layer. We argue also that,

while flux tubes may perhaps form below the peak of

the pumped magnetic layer, the eventual rise of such

tubes is more likely to fail completely due to the signif-

icant extent of the strong magnetic field that it has to

rise through, and that failed cases are less interesting

to us initially. We adopt the notation that, for exam-

ple, Bs = 0.10 corresponds to a time-averaged pumped

background field strength (at the depth of the center

of the tube) that is 10% of the unit peak strength flux

tube (in both axial and, more importantly, azimuthal

field). Locating the flux tube at the vertical position

corresponding to this strength in the average pumped

field is now one of our key control parameters.

Figure 14 shows intensity plots of normalized By

(green color scale), overplotted with normalized vertical

velocity, w (red-blue color scale), for both a positively-

twisted (panel a) and negatively-twisted (panel b) flux

tube for four different times in the evolution of the sys-

tem. Here the red and the blue color represents upwards

and downwards vertical velocity respectively. For this

case, the flux tube in both cases is introduced at a depth

such that Bs = 0.10 as explained above. Figures 14a and

b therefore look identical, with the flux tube embedded

between two convective downflow plumes. However, the

dynamics subsequently evolve substantially differently

in the two cases.

The flux tube with a positive twist rises initially due

to its imposed magnetic buoyancy, as in the case with

no background field. However, the rise this time is not

entirely coherent as the flux tube is rising through the

pumped horizontal background field. Instead, as the

tube rise, it experiences some axial flux loss along the

background field Bx accompanied by substantial disrup-

tion of the vortices that form in the isolated tube case.

This can be seen qualitatively but clearly in Figure 14a

at t2 = 0.81. These effects, due to the presence of the

background field, were also seen and described in Pa-

pers 1 and 2. Furthermore, the flux tube in this case is

located between two merging downflows at these early

stages in the plots. However, even with all these rel-

atively unfavorable circumstances for its rise, the flux

tube successfully enters the convectively unstable layer

(Fig. 14a at t3 = 1.35) and eventually rises to the top in

a weak upflow next to the strong merged downflow (Fig.

14a at t4 = 2.29). Note that the effect of convective mo-

tions on the rise is immediately evident as the flux tube

does not rise symmetrically (about the line x = 3) and
so these simulations are clearly distinct from those of

Papers 1 and 2.

In stark contrast, the dynamics of the flux tube with a

negative twist are entirely different. Figure 14b at t2 =

0.24 shows that, in the presence of the background field,

the flux tube does not even begin to rise through the

convective background. The flux tube structure simply

gets distorted quickly and breaks apart, with axial flux

rapidly drained along the Bx fieldlines (see Fig. 14b at

t3 and t4).

At this point, we have already arrived at an impor-

tant conclusion that parallels those of Papers 1 and 2,

i.e. that the flux tube dynamics in the presence of a back-

ground field are very different compared to cases where

there was no background field present. With no back-

ground field, tubes of both twists rose similarly, with the
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Figure 14. Intensity plots of normalized By, overplotted with normalized vertical velocity, w, for (a) q = 0.5 and (b) q = −0.5
at four different times. The time-averaged pumped background field strength, Bs, at the center of flux tube in both cases is
0.10, i.e., 10% of the initial strength of the flux tube.



20 Pontin et al.

dynamics dominated by their identical magnetic buoy-

ancy (see Section 3.2), whereas, here, in the presence

of background fields, positively- and negatively-twisted

tubes evolve very differently. In these new simulations,

these conclusions, that are similar to those of Paper 1

and 2, are reached despite the presence of convection and

a more self-consistent background field. Put in a slightly

different way, we have shown that a positively-twisted

flux tube is more likely to rise than a negatively-twisted

tube in the presence of convection and a self-consistently

pumped background field of strength, Bs = 0.10. Since

the magnetic buoyancy forces exerted by both signs of

twist are identical, we attribute these effects to mag-

netic tension effects, as described in Papers 1 and 2,

even though this system is more complex. We examine

this quickly with the Figure 15 and investigate this in

more detail later. Figure 15 shows the vertical profile of

the vertical tension force Fz,tens = (Bx∂x +Bz∂z)Bz on

the x = 3 line through the center of the tube at t = 0,

corresponding to the state in panels a and b in Fig-

ure 14. These line plots confirm that, compared to the

case where no background field is present (dashed line),

the positively-twisted tube has enhanced negative (up-

ward) tension in the lower half of the tube, whereas the

negatively-twisted tube has enhanced positive (down-

ward) tension in the upper half of the structure. In the

former case, the tension acts in concert with the buoy-

ancy force, helping the rise of the tube, whereas in the

latter case, tension acts against buoyancy, decreasing

the chances of rise. This is the case despite the fact

that the background pumped field may have significant

variations away from the mean profile at this particular

location.

4. CONCLUSION

In this paper, via a series of numerical simulations,

we have clearly established an asymmetry between the

buoyant rise of oppositely twisted flux tubes when in the

presence of overshooting convection and a dynamically-

formed large-scale background field. Specifically, we

find that a positively-twisted (anticlockwise) flux tube

is more likely to rise than a negatively-twisted (clock-

wise) tube when the rise is in the presence of a pumped

field that is, on average, oriented horizontally in the pos-

itive direction. This result affirms the existence of a se-

lection mechanism based on tension effects akin to the

non-convective case described in Papers 1 and 2. This

mechanism operates because of the relative orientations

of the azimuthal field of the tube and the horizontal

background field. For a positively-oriented background

field, the azimuthal field of a positively-twisted flux tube

is enhanced on the lower side and reduced on the up-

Figure 15. Plots from the canonical case at S = 7
(from Section 3.4) showing the tension force acting in the z-
direction, Fz,tens = (Bx∂x + Bz∂z)Bz, evaluated at x = 3.0
and t = 0.0 for both positive (q = 0.5) and negative
(q = −0.5) twisted tube. The dashed line shows the pro-
file from the symmetrical tube from Section 3.2 where no
pumped background field is present.

per side, leading to a net tension force that acts up-

wards in concert with buoyancy, encouraging rise. For

negatively-twisted flux tubes, the resultant net tension

force is downwards, acting against buoyant rise. As ex-

plained in Papes 1 and 2, this selection mechanism, when

related to the solar context, is in agreement with the so-

lar hemispherical helicity rule(s).

With the role of time-averaged pumped background

field in creating an asymmetry between the rise of dif-

ferently twisted flux tubes firmly established in a canon-

ical case above, it is essential to note that the pumped

magnetic layer can have significant local temporal and

spatial variations, due to turbulent nature of the over-

shooting convection. These variations can potentially

affect the initial background state that the flux tube

experiences quite substantially. One could argue that

the results that we presented earlier were not necessar-

ily representative since they may be a result of a fa-

vorable (or unfavorable) fluctuation in the initial condi-

tions. Furthermore, as explained and explored in Paper

2, we might expect substantial variations in behavior,

including violations to any “rules” governing the dy-

namics. This is not a bad thing, since the Solar Hemi-

spherical Helicity Rule that we are trying to understand

is itself actually only a statistical rule that is relatively
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weakly obeyed, in the sense that there are substantial

violations to the rule.

With this in mind, and to better understand the im-

plications of initial conditions, in the full paper we carry

out a Monte Carlo-type (MC) study that examines two

sources of local variations that can affect the initial back-

ground conditions and hence the rise dynamics of the

flux tube.
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Nordlund, Å. 2001, A&A, 380, 734.

http://adsabs.harvard.edu/cgi-bin/nph-bib query?

bibcode=2001A%26A...380..734D&db key=AST

D’Silva, S., & Choudhuri, A. R. 1993, A&A, 272, 621.

http://adsabs.harvard.edu/cgi-bin/nph-bib query?

bibcode=1993A%26A...272..621D&db key=AST

Fan, Y., Fisher, G. H., & Deluca, E. E. 1993, ApJ, 405,

390, doi: 10.1086/172370

Fan, Y., Fisher, G. H., & McClymont, A. N. 1994, ApJ,

436, 907, doi: 10.1086/174967

Hale, G. E. 1908, ApJ, 28, 315, doi: 10.1086/141602

Hale, G. E., Ellerman, F., Nicholson, S. B., & Joy, A. H.

1919, ApJ, 49, 153, doi: 10.1086/142452

Hurlburt, N. E., Proctor, M. R. E., Weiss, N. O., &

Brownjohn, D. P. 1989, Journal of Fluid Mechanics, 207,

587. http://adsabs.harvard.edu/cgi-bin/nph-bib query?

bibcode=1989JFM...207..587H&db key=PHY

Hurlburt, N. E., Toomre, J., Massaguer, J. M., & Zahn, J.

1994, ApJ, 421, 245

Korre, L., Brummell, N., Garaud, P., & Guervilly, C. 2021,

MNRAS, 503, 362, doi: 10.1093/mnras/stab477

http://www.tacc.utexas.edu
http://doi.org/10.1023/A:1004957515498
http://doi.org/10.1007/BF00150129
http://doi.org/10.1086/377444
http://doi.org/10.1086/311232
http://doi.org/10.1086/175410
http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?bibcode=1988JFM...196..323C&db_key=AST
http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?bibcode=1988JFM...196..323C&db_key=AST
http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?bibcode=1989SoPh..123..217C&db_key=AST
http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?bibcode=1989SoPh..123..217C&db_key=AST
http://doi.org/10.1086/426054
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001A%26A...380..734D&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2001A%26A...380..734D&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1993A%26A...272..621D&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1993A%26A...272..621D&db_key=AST
http://doi.org/10.1086/172370
http://doi.org/10.1086/174967
http://doi.org/10.1086/141602
http://doi.org/10.1086/142452
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1989JFM...207..587H&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1989JFM...207..587H&db_key=PHY
http://doi.org/10.1093/mnras/stab477


22 Pontin et al.

Korre, L., Garaud, P., & Brummell, N. H. 2019, MNRAS,

484, 1220, doi: 10.1093/mnras/stz047

Longcope, D. W., Fisher, G. H., & Arendt, S. 1996, ApJ,

464, 999

Longcope, D. W., & Klapper, I. 1997, ApJ, 488, 443,

doi: 10.1086/304680

Low, B. C. 1996, SoPh, 167, 217, doi: 10.1007/BF00146338

Manek, B., & Brummell, N. 2021, ApJ, 909, 72,

doi: 10.3847/1538-4357/abd859

Manek, B., Brummell, N., & Lee, D. 2018, ApJL, 859, L27,

doi: 10.3847/2041-8213/aac723

Matthews, P. C., Hughes, D. W., & Proctor, M. R. E. 1995,

ApJ, 448, 938, doi: 10.1086/176022

Moffatt, H. K. 1969, Journal of Fluid Mechanics, 35,

117–129, doi: 10.1017/S0022112069000991

Moreno-Insertis, F. 1983, A&A, 122, 241

—. 1986, A&A, 166, 291

Moreno-Insertis, F., & Emonet, T. 1996, ApJ, 472, L53.

http://adsabs.harvard.edu/cgi-bin/nph-bib query?

bibcode=1996ApJ...472L..53M&db key=AST

Nindos, A., & Andrews, M. D. 2004, ApJL, 616, L175,

doi: 10.1086/426861

Parker, E. N. 1975, ApJ, 198, 205.

http://adsabs.harvard.edu/cgi-bin/nph-bib query?

bibcode=1975ApJ...198..205P&db key=AST

Pevtsov, A. A., Berger, M. A., Nindos, A., Norton, A. A.,

& van Driel-Gesztelyi, L. 2014, SSRv, 186, 285,

doi: 10.1007/s11214-014-0082-2

Pevtsov, A. A., Canfield, R. C., & Metcalf, T. R. 1995,

ApJL, 440, L109, doi: 10.1086/187773
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