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ABSTRACT
In this report, we show the works done in the Kavli Summer Program in Astrophysics
2019 at University of California Santa Cruz. We explore a newly machine learning tech-
nique entitled ‘Vector Quantised Variational Autoencoder (VQ-VAE)’ on two projects:
(1) emulating galaxy images for the development of future surveys e.g. the Euclid Space
Telescope, and (2) exploring the morphological classification of galaxies using unsu-
pervised machine learning in this summer. First, the vector quantisation process in
the VQ-VAE successfully helps to speed up the training process in both VQ-VAE and
PixelCNNs, and to generate images with a better diversity than current generative
adversarial networks (GANs). For emulation task, we develop a pipeline for creating
a synthetic galaxy image which has been deconvolved with a specific point spread
function (PSF) that can be simply adapted to other surveys. However, a further inves-
tigation and improvement in conditional training for the PixelCNNs is necessary. For
the clustering task, we reveal the opposite effect between the capability of reconstruc-
tion and the distinction ability in clustering. Additionally, we show the potential of
exploring galaxy morphological classification using unsupervised machine learning by
showing the trend of the Hubble Type discovered by our methods. A further follow-up
for both projects are planned in the future work.
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1 INTRODUCTION

In this program, we explore a newly machine learning tech-
nique called ‘Vector Quantized Variational AutoEncoder
(VQ-VAE)’ which developed by Google DeepMind (van den
Oord et al. 2017; Razavi et al. 2019) on two different as-
tronomical projects: (1) The emulation and generation of
galaxy images, and (2) the morphological classification of
galaxies using unsupervised machine learning (clustering).

First, the generation of realistic simulated data is an
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essential but challenging task for either the current obser-
vations or the execution of the future surveys. To generate
artificial galaxy images, we can start with a simple para-
metric physical model such as a de Vaucouleurs profile (de
Vaucouleurs 1948, 1953) for elliptical galaxies and an ad-
ditional exponential component for spiral galaxies (e.g. Er-
ben et al. 2001; Bertin 2009). Afterwards, a more gener-
alised model such as Sérsic profile (Graham & Driver 2005)
is applied to produce different light distributions for emu-
lating galaxy images (e.g. Meert et al. 2013). To avoid the
limitation caused by the parametric forms and extend the
exploration to a deeper field in the previous methods, non-
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parametric methods were then developed such as shapelets
formalism (Massey et al. 2004; Dobke et al. 2010). In ad-
dition to emulating galaxy images through modelling the
distribution of real galaxies, cosmological simulations such
as the IllustrisTNG simulations (Nelson et al. 2019) provide
a great resolution and high-fidelity data through simulating
the interaction and evolution of galaxies. However, the cos-
mological simulations generally require an expensive compu-
tation ability, and have a limited description towards deeper
fields.

The development of machine learning techniques such
as generative models (e.g. Generative Adversarial Network,
Autoencoder, Variational Autoencoder) enable to model the
complex distribution of data from the real observed data
with a lower cost in computation than cosmological sim-
ulations (Ravanbakhsh et al. 2016; Rodŕıguez et al. 2018;
Caldeira et al. 2019; Mustafa et al. 2019) which also might
provide a more precise emulation result because the trained
model is based on the real data but being more complex
than the model obtained from the traditional parametric
and non-parametric methods (e.g. shapelets formalism).

The generative model, VQ-VAE, we explore in this
study has a much faster emulation process than other gener-
ative models due to the vector quantisation procedure in the
architecture (see details in Section 2.1). In addition, Razavi
et al. (2019) shows that this vector quantisation procedure
also enable the VQ-VAE to generate new artificial images
with better diversity when combining with other generative
models such as PixelCNNs (van den Oord et al. 2016) than
the BigGAN (Brock et al. 2018) which is currently one of
the most powerful generative models for generating stochas-
tic fake images.

Due to the diversity of the generated images VQ-VAE
can provide, we explore the capability of the VQ-VAE on em-
ulating galaxy images and generating new artificial galaxy
images. This emulation is useful in developing astronom-
ical analysis tools for observations and the usage of sim-
ulation for future surveys such as the Euclid Space Tele-
scope (Euclid). For example, the deep field of the simulation
for Euclid is based on the data from the Cosmic Assem-
bly Near-infrared Deep Extragalactic Legacy Survey (CAN-
DELS) (Grogin et al. 2011) which has a limited amount of
resource for the simulation of Euclid. To generate a large
number of high-fidelity galaxy images with a certain mor-
phology can well benefit the execution of Euclid project.

Second, along with the data explosion by more and more
survey projects in astronomy, e.g. The Sloan Digital Sky Sur-
vey (SDSS)1, the Large Synoptic Survey Telescope (LSST)2,
the Dark Energy Survey (DES)3, etc, which will image more
than hundreds of millions of galaxies, the traditional manual
classification analysis by experts is obviously impossible to
deal with this enormous amount of data.

The series of the Galaxy Zoo projects (Lintott et al.
2008, 2011; Willett et al. 2013) are one of the most success-
ful tool to solve the problem of large scale morphological
analysis. It allows amateurs to do the classification by an-
swering a series of questions based on galaxy images. How-

1 https://www.sdss.org
2 https://www.lsst.org
3 https://www.darkenergysurvey.org/

ever, classification analysis is complex and difficult such that
background knowledge and experience are essential when do-
ing it. In addition, while visual morphological classification
with Galaxy Zoo is faster than for single individuals, it is also
time-consuming. For example, the Galaxy Zoo Project spent
around 3 years on obtaining the classifications of ∼300,000
galaxies, due to the need for so many individual classifica-
tions per object. DES and LSST, for instance, would take
on the order of > 100 years to classify with the Galaxy
Zoo project. Therefore, an efficient automated classification
method by computational science is essential for the future
of this field.

The first application of machine learning on morpholog-
ical classification can be traced to ?. They applied a neural
network with an input layer of 13 parameters, e.g. stellar
properties, brightness profile, etc., which gave an output of
five different types of galaxies. Since then, a slew of stud-
ies in astronomy have appeared utilising the technology of
machine learning (e.g. Huertas-Company et al. 2009, 2011;
Shamir 2009; Polsterer et al. 2012; Sreejith et al. 2018; Cheng
et al. 2019b), neural networks (e.g. Maehoenen & Hakala
1995; Naim 1995; Lahav et al. 1996; Goderya & Lolling 2002;
Ball et al. 2004; de la Calleja & Fuentes 2004; Banerji et al.
2010; Cheng et al. 2019b), and Convolutional Neural Net-
works (CNN) (e.g. Dieleman et al. 2015; Huertas-Company
et al. 2015, 2018; Domı́nguez Sánchez et al. 2018; Cheng
et al. 2019b) for the morphological classification of galaxies.

Along with the success of the supervised machine learn-
ing such as CNNs on a variety of aspects in the stud-
ies of galaxy morphology, the power of unsupervised ma-
chine learning has not been investigated in detail. Unlike
supervised machine learning methods which require a large
amount of labelled data, and data labelling can be expen-
sive and misleading, unsupervised machine learning help to
save efforts on data labelling and reduce the human bias
while training a machine. Additionally, unsupervised ma-
chine learning (clustering) methods provide a first glimpse
of classification for a large amount of data which is helpful
and efficient to select the preliminary ‘interesting data’ in
the future surveys.

Therefore, scientists have started to explore the appli-
cation of unsupervised machine learning to, e.g. photomet-
ric redshifts (Geach 2012; Krone-Martins & Moitinho 2014;
Carrasco Kind & Brunner 2014; Siudek et al. 2018), as well
as classification using photometry or spectroscopy (Fustes
et al. 2013).

The application of unsupervised machine learning (clus-
tering) becomes more challenging when using high dimen-
sional data such as images. Hocking et al. (2018) is one of the
first studies of unsupervised machine learning applications
using imaging data which applied the Growing Neural Gas
algorithm (Fritzke 1994). Afterwards, Cheng et al. (2019a)
applies a different approaching than Hocking et al. (2018)
that using convolutional autoencoder (CAE) (Masci et al.
2011) to do feature extraction before connecting with unsu-
pervised machine learning algorithms.

In this report, we follow the methods described in Cheng
et al. (2019a) to explore the capability of VQ-VAE on recog-
nising galaxies’ visual morphology in an unsupervised man-
ner (clustering), and investigate the effects towards the clus-
tering results from the different types of autoencoders e.g.
VQ-VAE and Convolutional Autoencoder (ConvAE).

MNRAS 000, 1–16 (2019)



Kavli Summer Program Report 2019 3

Image  
Reconstruction

Emulating  
Galaxy Images

Unsupervised  
Morphological Classification 

of Galaxies

Generative Models  
— PixelCNNs (Section 2.2)

Clustering Algorithms 
 — Bayesian GMM (Section 2.3)

VQ-VAE (Section 2.1)

Figure 1. The illustration for the workflow of this work.

The arrangement for this report is as follows. The VQ-
VAE technique, the generative model for emulating, and the
unsupervised machine learning technique adopted in this re-
port are introduced in Section 2. Details about the data used
in this study is described in Section 3. The implementation
and the works done during the Kavli Summer Program in
UC Santa Cruz are shown in Section 4. We list some discus-
sions brought out from the preliminary results in this report
and the future plans in Section 5. At last, the conclusion of
the current progress is summarised in Section 6.

2 METHODOLOGY

In this work, we explore the application of the Vector
Quantised-Variational AutoEncoder (VQ-VAE) on emulat-
ing galaxy images and the morphological classifications of
galaxies using unsupervised machine learning algorithms.
The workflow is described in Fig.1. In this section, we intro-
duce the machine learning algorithms we use in this study
that VQ-VAE for image reconstruction (Section 2.1), Pixel-
CNNs for generating new galaxy images (Section 2.2), and
Bayesian Gaussian mixture model (BayesianGMM) for un-
supervised machine learning application (Section 2.3).

2.1 Vector Quantized Variational AutoEncoder
(VQ-VAE)

The Vector Quantised-Variational AutoEncoder (VQ-VAE)
is related to a variational autoencoder (VAE) and is applied
to emulate the real galaxy images in our study. The task of
image emulation is to, given a training data, learn the dis-
tribution of the given data, and reproduce the images with
the distribution. The structure of a VAE (Fig. 2) contains
an encoder with a posterior distribution q (z|x) and a prior
distribution p (z) which is mapped using Gaussian distribu-
tion with an obtained mean and standard deviation, where
x is the input data and z represents discrete latent variable,
and a decoder with a distribution p (x|z) for the input data.

The VQ-VAE is built based on the structure of VAE.
Instead of using Gaussian distributions to map the latent
space, the VQ-VAE applies an additional vector quantisa-
tion (VQ) procedure which make the posterior and prior
distribution become categorical.

The posterior categorical distribution q (z|x) is defined

encoder decoder
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Figure 2. The illustration of the structure of Variational Au-
toencoders. The µ and σ represents the mean and the standard

deviation, respectively.

as below:

q (z = k|x) =

{
1 for k = argminj∥ze (x)− ej∥2
0 otherwise

, (1)

where ze (x) is the output of the encoder, ej represents a
codebook which used for vector-quantising the ze (x), and
k is the obtained index for the vector used in the selected
codebook. We then measure the vector-quantised represen-
tation zq (x), which is the input of the decoder, through the
Equation 1 and 2.

zq (x) = ek, where k = argminj∥ze (x)− ej∥2. (2)

Fig. 3 shows the VQ process (van den Oord et al. 2017).
The output of the encoder, ze (x) can be represented by a
combination of the index of different vectors, k, in the code-
book. With this ‘index map’, we can rebuild a distribution,
zq (x), with the same structure as ze (x) but each ‘pixel’ in
zq (x) with the length of dimension, D, is quantised to one
of the vector in the codebook for the input of decoder. The
‘Embedding Space’ shown in Fig. 3 represents the codebook,
ej .

The loss function of the VQ-VAE contains three parts:
reconstructed loss, codebook loss, and commitment loss. The
reconstructed loss is measured by comparing the results from
the decoder with the input data. The codebook loss is used
to make the selected codebook, ej , approach to the output
of the encoder, ze (x) while the commitment loss is applied
to encourage the ze (x) to be close to the chosen codebook
from the previous epoch.

Therefore, the loss function, L, for the VQ-VAE is de-
scribed as below:

L = log p (x|zq (x)) + ∥sg [ze (x)]− e∥22 + β∥ze (x)− sg [e]∥22,
(3)

where the sq means the stopgradient operator and β is used
for adjusting the weight for the commitment loss. van den
Oord et al. (2017) found the results to be robust to the value
of β. The results has no apparent change when β ranges from
0.1 to 2.0. We set β = 0.25 in this study which follows the
setting in van den Oord et al. (2017). The code of VQ-VAE

MNRAS 000, 1–16 (2019)
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Figure 3. The illustration of the VQ-VAE. The source of this figure is from (van den Oord et al. 2017).

used in this study is built on TensorFlow4 and sonnet
library5.

2.2 PixelCNNs

The prior distribution, p (z), is a categorical distribution
which is learnt through the process of reconstruction in VQ-
VAE. This can be used to generate new images by providing
different z in the feature map. In our study, we use Pix-
elCNNs (van den Oord et al. 2016) to learn the prior dis-
tribution obtained from the VQ-VAE to generate random
artificial galaxy images (Section 4.2).

The PixelCNNs is an autoregressive model which can
model the joint distribution between pixels (Equation 4).

p (x) =

n2∏
i=1

p (xi|x1, . . . , xi−1), (4)

where x represents input images and xi indicates a single
pixel in the x. The learning process of PixelCNNs follows the
conditional distributions p (xi|x1, . . . , xi−1) and every condi-
tional distribution is modelled by a convolutional neural net-
work. The ordering of the learning process is in raster scan
order: row by row, pixel by pixel with every row which means
that the mapping of each pixel only depends on the pixels
above and the left of it. To fulfill this purpose, a masked
filter is applied to images as shown in Fig. 4 (left). The pre-
diction of PixelCNNs is also sequential that a pixel per time.
Each pixel is predicted according to the previous pixels that
has been predicted.

The generated images from PixelCNNs to this point is
stochastic which means that the generation of each image
is not related to each other in terms of physical properties.
However, given practical labels for input images as a latent
vector h, we then can build a conditional PixelCNNs model

4 https://www.tensorflow.org
5 https://sonnet.readthedocs.io/en/latest/

Figure 4. The illustration for the concept of PixelCNNs. The

source of this figure is from (van den Oord et al. 2016). Left: The

visualisation of how the PixelCNN maps the distribution of pixels.
The model can only condition on the previously generated pixels,

x1, . . . , xi−1 to predict pixel xi. Right: An example to show a
filter applied to images to eliminate the contribution of the pixels

below and at the right side of the pixels that has been predicted.

with the conditional distribution p (x|h) that allows to gen-
erate artificial galaxy images with a certain label e.g. Hubble
T-Types, stellar mass, luminosity, etc by adding the addi-
tional term, h, into Equation 4:

p (x|h) =
n2∏
i=1

p (xi|x1, . . . , xi−1,h). (5)

where h as mentioned above is a specific class for labelling
images which is coded as a one-hot encoding in the algo-
rithm.

The PixelCNNs algorithm used in this study is built on
Tensorflow and the main structure is from an online source
6.

6 https://github.com/anantzoid/Conditional-PixelCNN-decoder
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K=3

Figure 5. An illustration of the Gaussian Mixture model. The K

is the number of Gaussian distributions. The black dots show the
data distribution on the feature map, and the coloured ellipses

represent three Gaussian distribution we applied here to fit the
data distribution.

2.3 Bayesian Gaussian Mixture Model
(BayesianGMM)

A Gaussian mixture model is a probabilistic model for either
density estimation or clustering using a mixture of a finite
number of Gaussian distributions to describe the distribu-
tions of data points on a feature map. For K clusters, the
Gaussian mixture model is given as the form:

p (x) =

K∑
k=1

wkG (x|uk, εk) , (6)

where G (x|uk, εk) represents k-th Gaussian, uk denotes the
mean of the k-th Gaussian distribution, εk is the covariance
matrix of the k-th Gaussian, and wk is the prior probability
(weight) of the k-th Gaussian. Where,

K∑
k=1

wk = 1. (7)

An two dimensional illustration of the BGM is shown in
Fig. 5 (Equation 6). The input data are distributed on the
feature map (black dots). We use a number of Gaussian
distribution, which is K=3 in this illustration (coloured el-
lipses), to fit the data distribution on each feature map. Each
dot has a probability (weight) to each ellipse, the sum of
probabilities for each dot is equal to 1 (Equation 7).

In unsupervised learning, expectation-maximization
(EM) (Hartley 1958; Dempster et al. 1977; McLachlan &
Krishnan 1997) is used to find the maximal log-likelihood
estimates for the parameters of the Gaussian mixture model
by an iterative process. The log-likelihood of the Gaussian
mixture model is calculated using the formula:

ln [p (x|u, ε, w)] =

N∑
n=1

{
ln

[
K∑

k=1

wkG (x|uk, εk)

]}
, (8)

where N is the number of samples.
Bayesian Gaussian mixture model (BGM) is a varia-

tional Gaussian mixture model (Kullback & Leibler 1951;

Attias 2000; Bishop 2006). In this study, we apply the BGM
from the scikit-learn library 7 to do clustering.

3 DATA SETS

In this study, we use two different data sets: Cosmic Assem-
bly Near-infrared Deep Extragalactic Legacy Survey (CAN-
DELS) (Grogin et al. 2011) and Sloan Digital Sky Survey
(SDSS) Data Release 7 (York et al. 2000; Abazajian et al.
2009).

The CANDELS combines several surveys using multi-
ple Telescopes in both space such as the Hubble Space Tele-
scope (HST) and ground-based Telescopes which includes
the Great Observatories Origins Deep Survey (GOODS),
GOODS-N and GOODS-S (Giavalisco et al. 2004), Extended
Groth Strip (Davis et al. 2007), COSMOS (Scoville et al.
2007), and Ultra-deep Survey (Lawrence et al. 2007; Cira-
suolo et al. 2007). In this study, we use the GOODS data
from the CANDELS in h-band. The available data contains
the CANDELS/Deep Survey, the CANDELS/Wide Survey,
and the Early Release Science (ERS) data (Windhorst et al.
2011) which we have ∼6000 galaxy stamps in h-band in to-
tal.

As mentioned in Section 1, for the purpose of emula-
tion, one of our goal is to build an emulator for the develop-
ment of the Euclid Space Telescope Euclid. Therefore, the
CANDELS data is an ideal choice for training our emula-
tor. However, we have insufficient data available for training
our machine in this summer program. Therefore, for the de-
velopment of our methodology, we mainly applied the SDSS
data in this preliminary work. In this study, we use the SDSS
Data Release 7 (DR7) data which contains five-band pho-
tometry for 357 million distinct objects. However, we only
use r-band imaging data and focus on galaxy class in this
work. We apply a redshift cut z≤0.15 according to the cat-
alogue of the morphological classification of galaxies for the
SDSS DR7 from Meert et al. (2015) (M15 hereafter). Ad-
ditionally, we also apply the Hubble T-Type classification
from this M15 catalogue to do conditional training in the
task of emulation (Section 4.2.2).

4 IMPLEMENTATION & RESULTS

4.1 Image reconstruction through the VQ-VAE

We first use the VQ-VAE as the feature extractor for both
emulating and clustering problems. The architecture of our
VQ-VAE, which follows the design in (Razavi et al. 2019),
is shown in Fig. 6 and the details of each layer is listed in
Table 1. We applied the VQ-VAE on both CANDELS and
SDSS data (Section 3). The hyper-parameter settings for
both data sets are listed in Table 2 and the reconstruction
results are shown in Fig. 7 and Fig. 8. The reconstructed
images using the VQ-VAE well reproduce the features of the
original images and generally show a smoother background
than the original images.

An observed image is convolved with a specific point

7 https://scikit-learn.org/stable/index.html
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Figure 6. An illustration for the architecture of VQ-VAE used in this study. The details in each layer are shown in Table 1

Type #features filter size stride size non-linearity

ResNets

Conv2D res1 32 3×3 1×1 ReLu
Conv2D res2 128 1×1 1×1 ReLu

Encoder

Conv2D 1 64 4×4 2×2 ReLu
Conv2D 2 128 4×4 2×2 ReLu

Conv2D 3 128 3×3 1×1 ReLu

ResNets

Pre-VQ-VAE

Conv2D 4 64 1×1 1×1

Decoder

Conv2D 5 128 3×3 1×1 ReLu

ResNets
Conv2DTranspose 1 64 4×4 2×2 ReLu

Conv2DTranspose 2 1 4×4 2×2

Table 1. The hyper-parameters for the architecture of the VQ-VAE used in this study.

Hyper-parameters CANDELS SDSS

Input size 84×84 64×64

Feature map size after encoder 21×21 16×16

β (see Equation 3) 0.25 0.25
Batch size 32 32

Residual layers 2 2

Codebook size 512 512
Codebook dimension 64 64

Training step 100000 100000

Table 2. The hyper-parameters of VQ-VAE encoder and decoder

used for CANDELS and SDSS data.

spread function (PSF) which is mainly due to the diffrac-
tion of light through the telescope and also can be caused
by the seeing during the observation. Considering an image
characterised by its intensity distribution, I, corresponding
to the observation of a ‘real’ image, O through an optical

system,

I (x, y) =

∫∫ ∞

−∞
P
(
x− x

′
, y − y

′)
O
(
x

′
, y

′)
dx

′
dy

′

= (P ∗O) (x, y) ,

(9)

where P is the PSF.
To enable our emulator to adapt to other surveys, a

convolution process with a PSF corresponding to the input
data using the Convolution Theorem (Equation 9) is added
into the structure of the VQ-VAE after the last convolutional
transpose layer (Conv2DTranspose 2 in Table 1) to generate
a final output with PSF (Fig. 6).

I (x, y) = (P ∗O) (x, y) = F−1 [F (P )F (O)] , (10)

where F represents the operation of Fourier Transform and
F−1 is the Inverse Fourier Transform.

This extra step of adding a PSF into the output images
forces the machine deconvolve the output of the last con-
volutional transpose layer (Conv2DTranspose 2 in Table 1)
during the training process.

In this study, we simply apply the PSF downloaded from

MNRAS 000, 1–16 (2019)
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Figure 7. The reconstruction of CANDELS data using VQ-VAE. The first column is the original images while the second column shows

the reconstructed images. The final column shows the residual.

Figure 8. The reconstruction of SDSS data using VQ-VAE. The first column is the original images while the second column shows the

reconstructed images. The final column shows the residual.

MNRAS 000, 1–16 (2019)
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Figure 9. The example of the PSF deconvolution using the VQ-VAE. The first column is the original images and the second column
shows the reconstructed images while the third column presents the deconvolved images and the fourth one is the validation that using

the same PSF to convolve the previous images.

3D-HST8 for CANDELS data (GOODS-S, WFC3, F160W)
to all CANDELS data. The result is shown in Fig. 9. This
preliminary result confirms the feasibility of this deconvolu-
tion process in the VQ-VAE; however, to obtain a precise
deconvolved images a corresponding PSF for each input im-
age is required in the future work.

4.2 Emulating Galaxy Images using PixelCNNs

There are two main output from the VQ-VAE: (1) each im-
age is presented as a two dimensional feature map and each
pixel in the feature map is an index to indicate the represen-
tation code in the codebook; (2) a codebook which includes
512 codes with a dimension of 64 in our study. With these
two information, we can simply reconstruct a image from a
feature map using a pre-trained VQ-VAE decoder.

To generate a reliably synthetic galaxy image from the
real observed data, machine need to learn the prior distribu-
tion of the input data so that given a stochastic latent vari-
able, machine can generate a random realistic galaxy image
based on the prior distribution. In this program, we apply a
powerful generative model called ‘PixelCNNs’ (Section 2.2
to learn the prior distribution from the vector quantised fea-
ture maps extracted from the input data (the output after
‘VQ-VAE core’ in Fig. 6). Given a latent variable as an out-
set, it then construct a new feature map pixel by pixel based
on the distribution of previous predicted pixels. Inputting
this new feature map to a pre-trained VQ-VAE decoder, we
then obtain a new synthetic galaxy image.

The application of PixelCNNs on the feature maps ob-
tained before fed into the VQ-VAE decoder instead of the
original input images speed up the training process of Pix-
elCNNs in general (Razavi et al. 2019) because of the size
difference between the input images and the feature maps
(see Table 2) and the limited options of representation codes
in the codebook (512 codes are available in this study) for
each pixel when constructing a feature map.

4.2.1 Unconditional Training using CANDELS data

We firstly trained our PixelCNNs unconditionally (Equa-
tion 4) using the CANDELS data and a PSF downloaded

8 https://3dhst.research.yale.edu/Data.php

Hyper-parameters CANDELS SDSS

Conditional training No T-Type
Input size 21×21 16×16

Batch size 32 32
Learning rate 0.0003 0.0003

Decay steps 50000 50000

Decay rate 0.5 0.5
Grad clip 5.0 5.0

#Features 441 256

#Layers 18 18
Training step 100000 100000

Table 3. The hyper-parameters of the PixedlCNNs used for
CANDELS and SDSS data.

from the 3D-HST. The setting of the hyper-parameters for
the PixelCNNs is listed in Table 3. The hyper-parameters:
‘Decay steps’ and ‘Decay rate’ control the decay of the
learning rate during training. The decay learning rate is up-
dated through the formula:

lrdecay = lr ×Rdecay

(
Sglobal
Sdecay

)
, (11)

where lrdecay, Rdecay, and Sdecay represents the decay learn-
ing rate, ‘Decay rate’, and ‘Decay steps’, respectively.

The preliminary generation of synthetic galaxy images
trained by CANDELS data is shown in Fig. 10. To obtain
the deconvolved galaxy images (the right one in Fig. 10), we
retrieve the output images of the last convolutional trans-
pose layer (Conv2DTranspose 2 in Fig. 6) before convolved
with a PSF.

4.2.2 Conditional Training using SDSS data

To enable us to have more controls in generating galaxy im-
ages with a specific property, we then train our PixelCNNs to
condition on Hubble T-Type (Kartaltepe et al. 2015). How-
ever, we have insufficient number of CANDELS data (∼6500
images) to do conditional training for a range of T-Type clas-
sification (T ). Therefore, we decide to test our method on
SDSS data to obtain a preliminary result for methodology
development. The setting of PixelCNNs for this test is listed
in Table 3.

We use the T-Type classification from M15 which con-
tains ∼670,000 objects from the SDSS Data Release 7 in the
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Figure 10. The example of the synthetic galaxy images generated

by PixelCNNs using CANDELS data. Left: the generated images.

Right: the deconvolved generated images.

Figure 11. The distribution of the T-Type classification of galax-
ies in the M15 catalogue.

catalogue to condition our PixelCNNs. The distribution of
the T-Type classification in the M15 catalogue is shown in
Fig. 11 which we also apply a selection of redshift z < 0.15.
The distribution clearly shows that we have relatively more
galaxies with −2 ≤ T < −1 and apparently less numbers of
galaxies with −3 ≤ T < −2, 6 ≤ T < 7, and 7 ≤ T < 8 in
this catalogue. We categorise the floating value of T-Type
of each object to the closest integer and define 10 classes of
T-Type from T = −3 to T = 6. We then train conditionally
on the data with categorical class of T-Type.

To start with a fair training condition, we randomly
pick 12,000 galaxies from each class. For the classes having
insufficient data (i.e. T = −3 and T = 6), we randomly
rotate the images in these two categories to increase the
available number of data, then randomly pick 12,000 galaxies
from each new pool.

The preliminary result is shown in Fig. 12. Visually, it
is difficult to observe a clear trend of galaxy morphology in
the generated galaxy. However, we roughly can observe that
the generated galaxies with smaller value of T-Type (more
elliptical) look less spiral than the generated galaxies with
larger value of T-Type (more spiral).

4.2.3 Validation Tools

One way to validate the quality of our generated images is
to examine their physical properties to compare with those
properties of real observed data. There are a lot of soft-
ware is available to this task such as PyMorph9 (Vikram
et al. 2010), Morfometryka (Ferrari et al. 2015), and stat-
morph10 (Rodriguez-Gomez et al. 2019). To examine the
generated images, we apply aPython package entitled stat-
morph11 (Rodriguez-Gomez et al. 2019) which relatively
simply access to measure non-parametric morphological fac-
tors of galaxies e.g. C-A-S statistics (Conselice 2003).

However, although we roughly observe a ‘trend’ of
galaxy morphology shift in our preliminary results of con-
ditional PixelCNNs, the non-parametric ‘galaxy’ properties
(e.g. concentration, asymmetry, smoothness) of the gener-
ated images have no significant change along with the galaxy
morphology (T-Type) which might be caused due to some
issues in the training process of the PixelCNNs. To solve this
issue, a further investigation for the conditional training is
of great importance. Additionally, other generative models
such as Masked Autoregressive Flows (MAFs) (Papamakar-
ios et al. 2017) is considered in the future work. The detailed
discussion is shown in Section 5.

4.3 Unsupervised Machine Learning Exploration
on Galaxy Morphology

In this part, we only work on the SDSS data because of the
larger available number of SDSS data than CANDELS data
we had. We follow the same procedure as Section 4.2 to build
up our training data for the unsupervised machine learning
application so that each class (T-Types from T = −3 to
T = 6) contains 12,000 galaxies. Differently, we apply a scal-
ing process using arcsinh function to images that reducing
the contract of brightness between components if there are
multiple objects in one image.

In this section, in addition to VQ-VAE, we also
briefly compare the performance of the VQ-VAE (Sec-
tion 4.3.1) with a Convolutional Autoencoder (ConvAE) in
Section 4.3.2.

4.3.1 VQ-VAE Clustering

For the application of unsupervised machine learning, we fol-
low Cheng et al. (2019a) to use VQ-VAE as a feature extrac-
tor to capture the representative features then connect them
with an unsupervised machine learning algorithm, ‘Bayesian
Gaussian mixture model (BayesianGMM)’ (Section 2.3).

One of the main hyper-parameter in BayesianGMM is
the number of classification cluster used to separate the
galaxies. However, there is not yet a simple and a proper
way to select the optimal number of cluster. Cheng et al.
(2019a) applies a factor called ‘Area under the Receiver op-
erating characteristic curve (AUC)’ to optimise the number
of cluster used in their study; however, this factor is mea-
sured by comparing with other confirmed classification re-

9 https://github.com/vvinuv/pymorph
10 https://statmorph.readthedocs.io/en/latest/
11 https://statmorph.readthedocs.io/en/latest/
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Figure 12. The synthetic galaxy images generated by the combination of the VQ-VAE and PixelCNNs. Each row from top to bottom

shows different type of galaxy from T = 6 to T = −3. Left: real galaxy from SDSS. Right: generated galaxy images.

sults. Therefore, it is not an ideal selection method for this
study.

Guo et al. (2017) suggests that the number of cluster
shall be the same as the number of extracted features in the
autoencoders. Therefore, we decide to initially use the num-
ber of features to the number of cluster in this part of the
study. For this purpose, we slightly change the architecture
of the VQ-VAE described in Section 2.1 by adding an extra
convolutional layer in both encoder and decoder with a ker-
nel size of 4 and a stride size of 2 to make the number of
feature reduce to 64 (8×8) rather than 256 (16×16). This
modification is mainly for the convenience of analysing less
number of clusters in the preliminary clustering results.

The number of extracted features is decided through a
test using several available number: 4, 16, 64, 256 in the VQ-
VAE. We visually check the reconstructed images and mea-
sure the reconstruction loss (mean squared errors) to com-
pare the capability of reconstruction using different value.

Eventually we decide to use 64 as the number of features
as well as the number of cluster in this investigation of the
unsupervised machine learning.

The T-Type distribution of each cluster is shown in
Fig. 13 (codebook size=512 in the VQ-VAE). Around 12
clusters show a clear inclination towards early-type galaxies;
however, only about 4-5 clusters show an insignificant trend
of late-type galaxies. Most clusters do not show a trend fol-
lowing the galaxy morphology; however, it may follows dif-
ferent galaxy properties which will be an interesting future
work to continue investigating.

Additionally, we also test the impact using different size
of the codebook: 16, 32, 64, 128, 256, 512. We observe that
the size of codebook affects the performance of reconstruc-
tion that smaller size of codebook has slightly worse re-
construction ability in recovering intensity or background
noises. However, as shown in Fig. 14, using smaller size of
codebook such as 16 used in the figure, different classifi-
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Figure 13. The T-Type distribution of clusters obtained from

the combination of the VQ-VAE (size of codebook=512) and

BayesianGMM. The x-axis from left to right represents galaxies
are more elliptical, lenticular, then more spiral.

cation clusters show more clear tendency towards different
morphology of galaxies that ∼18 clusters and ∼16 clusters
show the features of early-type galaxies and late-type galax-
ies, respectively. In addition, interestingly, we also observe
a more clear trend for Hubble Type transition in different
clusters using a codebook size of 16 (Fig. 14) than the VQ-
VAE using the codebook with a size of 512 (Fig. 13). We pick
some relatively more representative clusters to show the ob-
served Hubble Type trend of galaxy morphology in Fig. 15.

4.3.2 Comparing with Convolutional Autoencoder
Clustering

The astronomical application of the unsupervised machine
learning technique combined with the architecture of con-
volutional neural networks starts with (Cheng et al. 2019a).
They apply a Convolutional Autoencoder (ConvAE) to ex-
tract features from images before fed into a clustering algo-
rithms on simulated strong gravitational lensing images for
Euclid Space Telescope (Metcalf et al. 2019) and they ob-
tain a great success in distinguishing several different types
of lensing such as different sizes of Einstein rings and arcs
structures. Therefore, we follow Cheng et al. (2019a) to ap-
ply a ConvAE to make a comparison in this study.

We test two different architecture of ConvAEs: (1) with-
out and (2) with dense layers. Both architectures are de-
signed to extract 64 features before fed into the clustering al-
gorithm, BayesianGMM (Section 2.3). The architecture (1)
is to mimic the architecture of the VQ-VAE without the vec-
tor quantisation process. In the vector quantisation process,
the dimensionality of features maps shrink from the size of

Figure 14. The T-Type distribution of clusters obtained from

the combination of the VQ-VAE (size of codebook=16) and
BayesianGMM. The x-axis from left to right represents galaxies

are more elliptical, lenticular, then more spiral.

8×8×64 into 64 features (8×8); therefore, we add 4 extra
convolutional layers with filter sizes of 64, 16, 4, 1 to instead
of ResNet in Fig. 6 in the encoder to gradually reduce the
number of features to 64.

On the other hand, we modify the architecture (2) by
adding 1 extra convolutional layer with a filter size of 64 and
4 dense layers with sizes of 4096, 1024, 256, 64 in the encoder
to gradually extract 64 features through dense layers.

First we compare the reconstruction ability between
these four architectures in Fig. 16. The comparison clearly
shows that the ConvAE with dense layers has the worst
reconstruction performance amongst all. The VQ-VAE with
codebook size of 16 then shows slightly worse reconstruction
result in mean squared errors of the residuals than another
VQ-VAE and the ConvAE without dense layers. The other
two architectures, VQ-VAE with codebook size of 512 and
the ConvAE without dense layers have similar reconstruc-
tion ability to each other which are shown in the measure of
the mean squared errors as well as the visual check.

We then also plot the T-Type distribution of the clus-
tering results from other two ConvAE models in Fig. 17 and
Fig. 18. Both ConvAE models (with and without dense lay-
ers) show a better distinction in galaxy morphology than
the VQ-VAE with a codebook of a size of 512. It is difficult
to decide which model is the better one amongst the three
models: VQ-VAE (codebook size=16) and two ConvAEs.
However, the ConvAEs cannot preserve rotation invariant
(Cheng et al. 2019a) which means that the ConvAEs classify
the same galaxy into different categories when we rotate the
image. The convolutional layers extract localised features;
the ConvAEs compresses input images into several categor-
ical localised features, it then reproduces images based on
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Cluster 42 Cluster 38 Cluster 27 Cluster 28 Cluster 26 Cluster 12 Cluster 57 Cluster 59

Figure 15. The presentation of some representative clusters which show a trend of Hubble Type using the codebook size of 16 in the

VQ-VAE. The text above shows the cluster ID and the first row shows the T-Type distribution of the cluster.

these features. Therefore, the location of each pixel in the im-
age is of great importance in the ConvAEs that the rotation
of images causes different clustering results. On the contrast,
the series of variational autoencoder e.g. VQ-VAE assign a
distribution to map the extracted features. Through this
mapping process, machine connects similar features with
different location by describing through distributions that
might help to preserve the rotation invariant.

We are at the starting point of applying unsupervised
machine learning techniques on astronomical imaging data.
There are only a few studies working on this application
using imaging data (Hocking et al. 2018; Martin et al.
2019; Cheng et al. 2019a); therefore, a quantitative valida-
tion method such as Receiver operating characteristic curve
(ROC curve) for supervised machine learning application is
not developed for the application of unsupervised machine
learning yet. To define a quantitative examination and build
a standard and systematic validation method are of great im-
portance in the future application of unsupervised machine
learning.

5 DISCUSSION & FUTURE WORKS

This work can be separated into three main parts to do dis-
cussion and each of them has its own interesting approach-
ing can be improved and explored in the future. Here we list
several issues we have spotted in the current progress and
present a potential approaching can be applied and investi-
gated in the future for each part.

5.1 Image Reconstruction

First, along with the fast development of machine learning
field, there are many options of machine learning techniques
for image reconstruction e.g. variational autoencoder (VAE)
(Kingma & Welling 2013) and generative adversarial net-
work (GAN) (Goodfellow et al. 2014). It is very challenging
to clearly discuss the pros and cons for all the available meth-
ods. Therefore, to develop a standard validation tool will be
very helpful in this topic, and this is also one of the most
important part for other two sections.
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Figure 16. The comparison between four different autoencoders:

VQ-VAE (the size of codebook, K=512), VQ-VAE (the size of

codebook, K=16), ConvAE without dense layers, and ConvAE
with dense layers. The first column shows the original images

while the second and the third columns present the reconstructed

images and the residuals.

Second, focus on the technique we used in this study,
VQ-VAE, some choices of the hyper-parameters such as (1)
the size and dimensionality of the codebook, (2) the number
of training epochs, and (2) the design of the architecture
need to be investigated more.

The size of codebook in the VQ-VAE controls the avail-
able options of code on rebuilding the feature maps which
means that it decides how detailed the machine can repro-
duce the images. In this sense, we expect that the smaller
size of codebook, the worse reconstruction results we have,
and this seems the case in our test.

We test different size of codebook in the VQ-VAE: 16,
32, 64, 128, 256, 512. Although the difference of results us-
ing different size of codebook is insignificant, we observe that
the reconstruction results are relatively noiseless and have
lower brightness when the less numbers of code are applied
(Fig. 16). This phenomenon is due to the limited number of
codes can be used to recover the features map. When ma-
chine has less number of codes available, it will force itself to
apply this code on more significant features instead of back-
ground noises and slight brightness change at the outskirt.

This effect also influences the choices of codebook size
for emulation and clustering. For emulation, it depends on
researches, in the case that to generate synthetic denoise im-
ages, smaller size of codebook is more appropriate, but to
generate images with details, the larger size of codebook is

Figure 17. The T-Type distribution of clusters obtained from

the combination of the ConvAE without dense layers and

BayesianGMM. The x-axis from left to right represents galaxies
are more elliptical, lenticular, then more spiral.

Figure 18. The T-Type distribution of clusters obtained from the

combination of the ConvAE with dense layers and BayesianGMM.

The x-axis from left to right represents galaxies are more ellipti-
cal, lenticular, then more spiral.
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applied. On the other hand, for clustering on galaxy morpho-
logical classification, a smaller size of codebook is suggested
because the noise level and insignificant change in images are
not the main concern in classification of galaxy morphology.

The dimensionality of the codebook is supposed to in-
fluence the capability of reconstruction as well but might
have much less impact than the size of codebook. However,
we have no time to investigate this hyper-parameter in this
report which will be an interesting part to explore in the
future if we continue applying the VQ-VAE.

The number of training step is a ambiguous hyper-
parameter to be determined because the reconstruction loss
converges much earlier before a good reconstruction result is
obtained in the autoencoder. This situation might be caused
by more modifications are constructed and deconstructed to
build up the details but remain a certain reconstruction loss
after converging. Therefore, the number of training step in
this study is literally determined by trial and error which
needs to find a more quantitative or qualititative way to
decide.

At last, for the purpose of emulation, a modification
for the architecture of the VQ-VAE might be useful to
reconstruct images with better resolution rather than the
smoother images we obtain in this study. Razavi et al. (2019)
applies a two-levels sequential training in the VQ-VAE that
provides a learning process to hierarchically learn latent
codes. This extra process can impressively improve the res-
olution of reconstruction images that might be helpful for
the emualtion task.

5.2 Emulating Galaxy Images

Firstly, we have not successfully generate conditional syn-
thetic galaxy images in this task yet. To approach this goal
in the future development of our methodology, a further in-
vestigation for the choices of hyper-parameters, the number
of training data, the number of training epochs is necessary.
On the other hand, a lot of alternative generative models
can be applied in this study such as Masked Autoregressive
Flows (MAFs) (Papamakarios et al. 2017).

In this task, we are also interested in a potential im-
provement from adding colour information. We have a clear
scheme of the relationship between the galaxy morphology
and the galaxy properties such as colour in general that
early-type galaxies are mostly massive, with older stellar
populations, and redder while late-type galaxies, which in-
clude spiral galaxies and irregular galaxies, and consist of a
younger population show blue features in the disk structures
and red features in the bulge. This scheme in real galaxy
might be very helpful to constrain machine to generate ar-
tificial galaxy images with a precise brightness distribution.

In this project, one of our main goal in the future work
is to build an emulator for the development of the Euclid
Space Telescope. To approach this, we suppose to train our
machine with data of deeper field from the Hubble Space
Telescope such as CANDELS or COSMOS data (Leauthaud
et al. 2007). However, to train our pipeline, we need a large
amount of data for the conditional training. The approach-
ing of data augmentation or alternative options will be es-
sential to continue this work in the future.

At last, another future work we are interested in is to
condition on galaxy size or other properties instead of galaxy

morphology (e.g. Hubble T-Type) which might be relatively
simple to examine and obtain a robust conclusion for de-
veloping our pipeline. Additionally, to condition on floating
values instead of categorical classes is an useful extension in
our future work as well.

5.3 Unsupervised Machine Learning on Galaxy
Morphological Classification

First, we compare the VQ-VAE with another autoencoder
called ‘Convolutional autoencoder (ConvAE)’ in this study.
However, the comparison in this study is done by a visual
check to the images in the classification clusters and the T-
Type distribution in each cluster. To show galaxy properties
such as T-Type distribution in each cluster is a straight and
clear way to examine the performance of clustering which
will be interesting to see the comparison of other galaxy
properties in the future works. However, this might not be
sufficiently robust and convincing in this aspect. The ap-
plication of unsupervised machine learning using imaging
data is fairly new in astronomy (Hocking et al. 2018; Martin
et al. 2019; Cheng et al. 2019a). A standard and system-
atic analysis procedure and validation tools to determine
the performance of a clustering algorithm such as Receiver
operating characteristic curve (ROC curve) for supervised
machine learning application have not been developed in
both computer science and astronomy yet. To develop a val-
idation standard for comparing different unsupervised ma-
chine learning techniques will be very useful for the future
research.

Second, as we have discussed above in Section 5.1. The
codebook size in the VQ-VAE can significantly influence
the clustering results. This is a combat between reconstruc-
tion ability and classification distinction ability. To use a
less number of codes in the VQ-VAE, we obtain a rela-
tively worse reconstruction result, but have a significantly
improvement in the ability of distinguishing different galaxy
morphology.

Using the codebook size of 16 in the VQ-VAE, we ob-
serve a trend of Hubble Type in the clustering results (Sec-
tion 4.3.1 and Fig. 15). However, one of the study we in-
tend to explore through clustering techniques is to investi-
gate other possibilities of the galaxy morphological classifi-
cation which might differ from the traditional Hubble Type
though machine’s view. This can also be applied to many
different investigations such as galaxy evolution and other
astronomical topics.

Third, in this study, we do not have a proper and quan-
titative selection for the number of clusters we used in this
study. This is also another crucial question for applying un-
supervised machine learning techniques. There are a few
clusters algorithms approaching a optimal number of clus-
ter themselves e.g. hierarchical clustering such as Agglom-
erative Hierarchical Clustering (Bouguettaya et al. 2015)
and density-based clustering such as DBSCAN (Ester et al.
1996), can be considered in the future work to instead of
Gaussian mixture models used in this study. However, to
build a optimisation process for selecting the number of clus-
ters when using any unsupervised machine learning tech-
niques will be very useful for the future application in the
field. Some potential approaching might can be done us-
ing Principal Component Analysis (PCA), t-SNE (van der

MNRAS 000, 1–16 (2019)



Kavli Summer Program Report 2019 15

Maaten & Hinton 2008) which a further investigation is
surely needed in the future.

Fourth, a relative minor future work is to add the colour
information in the application which as mentioned in Sec-
tion 5.2 is very reasonable improvement can be applied in
the future work for the galaxy morphological classification.

At last, one of an interesting goal for developing this
clustering methodology is to apply this method on the sim-
ulated data of the James Webb Space Telescope which might
give us a prediction of the morphology distribution at a
higher redshift.

6 CONCLUSION

In this report, we present the work done in the Kavli sum-
mer program at the University of California Santa Cruz. We
explore the astronomical application of a newly technique
entitled ‘Vectore Quantised Variational Autoencoder (VQ-
VAE)’ on emulating galaxy images for the development of
future surveys and the investigation of galaxy morphological
classification using unsupervised machine learning.

First, we develop a pipeline of the emulator using the
VQ-VAE and PixelCNNs which given a specific PSF image
can also deconvolve images during training process of the
VQ-VAE. We can do both unconditional and conditional
generation using our pipeline. However, the preliminary re-
sults of conditional training show that some issues still need
to be investigated in our generated images which might be
caused by the conditional training process in the PixelCNNs.
If we can overcome the problem of the final steps to gener-
ate high-fidelity synthetic galaxy, this emulator can generate
galaxy images without PSF convolution that can be simply
adapted to other surveys. One of the useful application is to
train our emulator by either CANDELS or COSMOS data
to generate synthetic galaxy images for the development of
the Euclid Space Telescope.

Second, we explore the unsupervised machine learning
application using the VQ-VAE and Convolutional Autoen-
coder (ConvAE). We observe that reducing the size of code-
book in the VQ-VAE decrease the capability of reconstruc-
tion but increase the distinction ability in clustering. Addi-
tionally, we discover a trend of Hubble Type in the clusters
classified by the VQ-VAE (codebook size=16).

On the other hand, we test two different architecture of
ConvAEs (with and without dense layers) but with the same
number of features and output clusters as the VQ-VAE.
Both ConvAEs show similar performance to each other, and
show a better distinction than the VQ-VAE with larger size
of codebook (codebook size=512). However, these prelimi-
nary results are lacking a quantitative description. Through
this investigation, we realise a better and more robust vali-
dation tools needs to be define in the field of unsupervised
machine learning application.

The application of unsupervised machine learning is an
relatively unexplored territory in astronomy; therefore, we
think of a lot of interesting approaching in the future which
can be continue working on. However, the first step of all
is to develop the methodology. Therefore, we decide to con-
tinue working on SDSS data to develop the methodology
because there are many information and analysis done for
SDSS data which is helpful for examining our method. Once

we build up our methodology, a further exploration to the
data from the Dark Energy Survey, which has a better res-
olution and deeper depth than SDSS, will be applied. Ad-
ditionally, we are also planning to apply our method on the
simulated data (e.g. from IllustrisTNG simulations) for the
James Webb Space Telescope to predict the galaxy morphol-
ogy distribution at the higher redshift in the future work.
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Masci J., Meier U., Cireşan D., Schmidhuber J., 2011, in Proceed-

ings of the 21th International Conference on Artificial Neu-

ral Networks - Volume Part I. ICANN’11. Springer-Verlag,
Berlin, Heidelberg, pp 52–59, http://dl.acm.org/citation.

cfm?id=2029556.2029563

Massey R., Refregier A., Conselice C. J., David J., Bacon J., 2004,
MNRAS, 348, 214

McLachlan G., Krishnan T., 1997, The EM algorithm and exten-

sions. Wiley, New York

Meert A., Vikram V., Bernardi M., 2013, MNRAS, 433, 1344

Meert A., Vikram V., Bernardi M., 2015, MNRAS, 446, 3943

Metcalf R. B., et al., 2019, A&A, 625, A119

Mustafa M., Bard D., Bhimji W., Lukić Z., Al-Rfou R., Kratochvil
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