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ABSTRACT

Robust generation of high-fidelity data is an essential component of large astronomical survey analysis. While
expensive simulations are typically used for creating synthetic data, recent development of fast emulators using
machine learning techniques like Generative models – Variational Autoencoders[1], Generative Adversarial
Networks[2] or Gaussian Processes – have made high precision predictions of cosmological functions possible.
This projects deals with a natural progression of the above for emulating astronomical images using Deep
Generative models. The project involves creating training images using GalSim, a software library for
generating images of stars and galaxies, tuning a relatively few number of physical parameters on a space-
filling scheme. A second dataset, made of real galaxy images from Cosmic Evolution Survey – COSMOS[3, 4]
–, is also considered in this work. Ensemble of generative networks, Principal Component Analysis, Gaussian
Processes, Variational Autoencoders and Masked Autoregressive Flow[5], is trained at interpolating values of
input parameters. Independent measurement pipelines are applied to validate the emulated images beyond
visual confirmation and hold-out tests. The network will be made more physics-aware based on this preliminary
results and is extended to emulate realistic synthetic images tuned for other surveys and catalogs. Generative
models designed in this work are compared at generating galaxy images and Deep generative models as
Variational Autoencoders outperform machine learning techniques such as Principal Component Analysis for
analytical and real images. An effort will be made in future work to improve current models performances and
interpolate physical parameters to extend emulation to other surveys, as Illustris/TNG simulations.

Keywords Galaxy emulation · Neural Networks · Generative models · Variational Autoencoder
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1 Introduction

The generation of high-fidelity data is a crucial challenge in large astronomical analyses, either for creation of mock sky catalogs
in anticipation of future surveys, or in parameter inference pipelines for confrontations with observation. While modeling
the complex non-linear physics as gravitational or Magneto-hydrodynamical interactions can be very precise, they cannot be
described analytically and generally require expensive numerical simulations. Application of these in traditional statistical
inverse problems of astrophysical parameter inference such as the Markov Chain Monte Carlo (MCMC) Metropolis-Hastings
algorithm[6] is prohibitively expensive since these Bayesian inference algorithms rely on hundreds of thousands forward model
evaluations to estimate posterior probabilities of model parameters.

Recent developments of machine learning techniques enable model parameters inference from experimental data at low
computational cost. Progress on emulation techniques based on deep generative models allow high-precision and inexpensive
forward models evaluation. Emulation methods in astrophysics, for example [7, 8, 9], are presented as relevant to many problems
when a large number of expensive model evaluations is needed and so are those presented in this work.

This project aims at creating a robust emulator based on generative models and neural networks to generate synthetic sky images,
composed of galaxy postage stamps. Such emulator will be trained at generating images of galaxies from a number of physical
parameters. Meticulous assessments and measurement pipelines will be performed to validate the emulated images beyond
visual confirmation.
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Figure 1: Emulation : an example with Variational Autoencoder
and Gaussian Process

Given the complexity involved in real galaxy images, we first
create a simulated dataset using GalSim [10], a library for
generating images of stars and galaxies. This training set is
made of elliptical exponential profile images generated by
tuning relatively few parameters on an optimal space-filling
sampling scheme [11]. However, deep learning techniques are
known to be sensitive to input noise and real galaxy images
are much more complex than analytical profiles. Therefore, an
emulator trained on this first data wouldn’t be able to generate
high-fidelity data. Therefore, we define a second dataset made
of real galaxy postage stamps from the Cosmic Evolution
Survey (COSMOS) [3] taken by Hubble Space Telescope
(HST) and related physical parameters given by GalSim and
by Leauthaud et al. [4]. Several emulators are then trained
and experienced on these datasets. Emulators in this work
are designed with two components and trained in two steps,
as illustrated Fig.1. First, an unsupervised generative model
is trained to reproduce input images through dimensionality
reduction and reconstruction (respectively denoted as encoder

and decoder Fig. 1), learning a low-dimensional representation of the inputs, known as latent variables. Once trained, the
dimensionality reduction network is removed and an interpolator (designated as Gaussian Processes – GP – interpolation Fig. 1)
or a conditioning process is trained to map from physical parameters to latent variables. Finally, emulating synthetic galaxy
images from physical parameters is presented here as mapping the latter to latent variables and decoding them to images. In this
work, we propose three emulator architectures. The first one uses Principal Components Analysis (PCA) as generative model
and GP as an interpolator. The second one, as shown in Fig. 1, is composed of a Variational AutoEncoder (VAE) [1] and GP
interpolation. The third emulator architecture also consists of a VAE as a generative model but a conditional density estimation
network (Masked Autoregressive Flow – MAF [5]) is used as a conditioning process. To assess these emulators performance, we
consider several measurement and validation pipelines. We first evaluate reconstruction quality through first order metrics and
compare pixel intensities between original and emulated images, compute reconstruction errors as Mean Square Error (MSE) and
R-squared error (R2). Then, we propose higher order metrics to confirm that the emulator is capable of realistic data synthesis.
To do so, we measure, on original and emulated images independently, shear parameters using GalSim. The distribution of these
parameters should be similar.

This report is organized as follows : in Sect. 2, we describe the 2 datasets used in this work. Emulation methods are detailed in
Sect. 3 and results are evaluated in Sect. 4. Finally, perspectives and future work are discussed and conclusions of this work are
presented in Sect. 5.
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2 Data

2.1 GalSim images
Galaxy images emulated in this work are generated using GalSim [10]. This open-source toolkit aims at providing images
of galaxies and stars, including several transformations handling such as dilation, rotation, shear or convolution with Point
spread function (PSF) profiles. GalSim allows one to generate and transform a number of parametric profiles or images of
galaxies from Cosmic Evolution Survey (COSMOS) [3], a real astrophysical catalog, associated to a PSF model and a parametric
representation.

2.1.1 Analytical profiles
Given some well-chosen physical parameters, GalSim is able to generate galaxy profile images. Therefore, as a first simple
dataset, we define five physical parameters to tune for galaxy images generation with GalSim. We initially generate a set of
parametric exponential profiles. The surface brightness varies along with r as

I(r) =
F

2πr20
exp− r

r0
,

with respect to F , total flux and r0, scale radius. Such generated profiles are circularly symmetric and centered on the coordinate
origin. Then we introduce two additional parameters describing a shear distortion to transform a circle into an ellipse with a
minor-to-major axis ratio q = b

a and a position angle β. In practice, we use as parameters g1 = a−b
a+b cos 2β and g2 = a−b

a+b sin 2β,
under the constraint

√
g21 + g22 < 1, to define this transformation. The g1 and g2 are called "reduced shear" parameters. Finally,

these elliptical exponential profiles are convolved with a Gaussian PSF, characterized by its Full Width at Half Maximum
(FWHM), linearly related to the variance σ2 of the related 2-D Gaussian distribution. The values of these 5 physical parameters
(F , r0, g1, g2, σ2) are generated on a latin hypercube design for optimal space filling. This space-filling scheme is explained in
detail in Appendix A.
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Figure 2: Optimal space filling scheme: latin hypercube for 512
evaluations.

A realization of latin hypercube sampling performed for 512
sampled points is presented Fig. 2. Each graph in the diagonal
plots the distribution histogram of each parameter, which is, as
expected, uniformly distributed. Each scatter plot represents
the normalized value of 2 physical parameters associated to
each sampled point. Using these physical parameters samples,
we generate with GalSim a representative analytical profiles
dataset. Fig. 3 shows a subset of these parametric galaxy im-
ages and emphasizes the large diversity of generated elliptical
profiles.

2.1.2 COSMOS-type images
The COSMOS survey is the largest survey taken by the Hubble
Space Telescope (HST). A publicly available subset of this
survey, the COSMOS HST Advanced Camera for Survey
(ACS) is used by GalSim as postage stamps provided by [add
ref Leauthaud et al. 2007] with a PSF model based on the
optical properties of HST. The catalog used here is a catalog
of ∼ 82000 galaxies taken by the Wide Field Channel (WFC),

Figure 3: 20 GalSim profiles generated with 5 parameters: galaxy flux, radius, shear profile parameters g1 and g2, Gaussian PSF
fwhm.
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Figure 4: 45 postage stamps (64 × 64 pixels) of real galaxy images from COSMOS with an absolute depth magnitude lower than
IAB = 25.2, provided by GalSim.

through the F814W filter with an absolute depth magnitude lower than IAB = 25.2. fig. 4 shows 45 postage stamps of size 64 ×
64 pixels of such real galaxies in COSMOS provided by GalSim. The noisy images of the galaxies depart significantly from the
from analytical profiles from Fig. 3, due to the reduction in brightness and features with decreased signal-to-noise ratio. This
underlines the fact that analytical profiles are highly over-simplified to understand their complexities of real galaxies.

Every postage stamp in GalSim is associated with a parametric representation. Galaxies have been fitted either with a sersic
profile or a bulge and disk profile. The surface brightness of a sersic profile varies as

I(r) =
F

a(n)r2e
exp−b(n) (r/re)

1
n ,

where re is the half-light radius (the radius within half of the galaxy light is contained), a(n) is a normalization function and
b(n) computed by GalSim following [add ref Ciotti et al. 1999] with respect to n, the sersic index. The bulge profile is fitted
with a DeVaucouleurs profile whose surface brightness is

I(r) =
F

0.010584r2e
exp−7.66925 (r/re)

1
4 ,

and the disk profile is finally fitted with an exponential profile. Similar to elliptical exponential profiles generation (Sect. 2.1.1),
the two shear parameters q = b

a and β are added to describe each galaxy. GalSim also provides an estimate of the redshift z
of each galaxy. Hence, these 6 parameters (F , re, n, q, β, z) represent the physical parameters provided by GalSim. We also
include some additional parameters introduced in [add ref Leauthaud et al. 07] : absolute magnitude IAB in the AB system, star
formation rate SFR, specific star formation rate sSFR and stellar mass M .

hlr

Shear q

Shear β

Abs. Mag. IAB

Flux F

Figure 5: An overview of a few COSMOS galaxy physical
parameters given by GalSim et Leauthaud et al. [4] : half-light
radius, shear parameters q and β, absolute magnitude and galaxy
flux. In the diagonal: the distribution histogram of physical
parameters associated to each image. Other plots : scatter plots
of normalized values of 2 physical parameters associated to each
image.

In this set of real galaxy images, the distribution of each pa-
rameter is not uniform as in analytical profiles generated in the
previous section with an optimal space-filling scheme. Fig. 5
presents the distribution histogram of 5 physical parameters
associated to each image (in the diagonal) and scatter plots
of normalized values of 2 physical parameters. These plots
give an overview of galaxies in our COSMOS-type dataset.
The distribution of these 5 physical parameters looks like
Gamma or Normal distributions where normalized extreme
values (near 0 or 1) are under-represented in the dataset. This
might have an influence on the performance of our generative
model, which will not be trained enough to generate outliers
in the training set, as instance galaxies with a high or medium
half-light radius and a high flux.

3 Emulation methods
This section develops different emulation methods build up
with a generator (Principal Components Analysis - PCA or
Variational AutoEncoder - VAE) and an interpolating (Gaus-
sian Processes - GP) or a conditioning (Masked Autoregres-
sive Flow - MAF) process, their main characteristics and
architecture. These emulators are trained and tested on the various datasets we introduced in Sect. 2. Visual results on each
dataset and for each method are shown and discussed.
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3.1 Emulation with PCA and GP
PCA is known as an orthogonal and linear dimensionality reduction procedure to transform a set of N observations of dimension
p expected to be correlated into a smaller set of linearly independent M principal components of dimension p. This process
performs a M -dimensional ellipsoid fitting to the data. Th principal components are then the axes of the ellipsoid. More formally,
a PCA allows to write each observation X ∈ Rp as

X ' Bz, (1)

with B ∈ Rp×M is the orthogonal truncated basis (i.e. the principal components basis) and z ∈ RM are the weights associated
to each principal component. The encoding part of the PCA generator is finding the best ellipsoid fit and thus the principal
components matrix B. In practice, the number of principal components M is an hyperparameter and is often set as the smallest
number of components that statistically explain at least a certain percentage (99.5 % in Fig. 6.a)) of the variance of the dataset.
The decoding part of the PCA generator is basically multiplying this basis matrix B with a latent vector z. As PCA relies on
linear assumptions, if the data is not linearly correlated, or if data doesn’t fit in an ellipsoid manifold, PCA could fail to find a
relevant basis of principal components. Therefore, we expect PCA to be a powerful generator on the simple analytical profiles
dataset and quickly be over-performed by other generators for complex COSMOS images.

Once a dimensionality reduction has been performed on the training set and an efficient generator model such as PCA has been
trained, we aim at linking the related physical parameters to the low-dimensionality representation of the data, i.e. the latent space
represented in Eq. 1 by z. To this aim, we need to observe and ensure a dependency between the observed physical parameters of
the training set and the related latent variables. This can be achieved by simply plotting point-wise dependency graphs between 2
dimensions of the latent space and assigning to each point a color corresponding to the value of a specific physical parameter.
Such a graph is given Fig. 7 and will be discussed later. If any dependency is noticed, mapping physical parameters pi ∈ Rd into
a latent variable zi ∈ RM can be performed with a Gaussian Process (GP) interpolation. GP interpolation process is detailed in
Appendix B.

As shown in Fig. 6, we performed a PCA on 512 analytical profiles generated with GalSim in Sect 2.1.1, setting the number
M of components to 12 such that the model explains ∼ 99.5% of the variance of the data. The resultant 12 components are
shown in Fig. 6.b). Fig 7 shows an example of a point-wise dependency plot of the first 2 dimensions of the latent space, i.e. the
values of the two first principal components, where a light yellow point corresponds to a large-radius galaxy and a dark blue
point to a small-radius galaxy. There is here a very clear dependency between the physical parameter r0 and the value of the first
two components. Similar plots can be derived to ensure that dependencies are observed with every physical parameter and that
an interpolation between physical parameters and latent variables is possible. A Gaussian Process is then trained to perform
such interpolation and the emulator finally the system {GP, inverse PCA}, with GP interpolating from physical parameters to a
latent variable and inverse PCA generating a galaxy image from the interpolated latent variable. Results of this emulator on 10
test-analytical profiles (which are not included in the training set) are shown in Fig. 8. The top row shows the original analytical
profiles whereas the bottom row shows the emulated image from the physical parameters associated to each profile in the first row.
These results confirm that, visually, our emulator is able to generate realistic simple profiles from physical parameters. However,
very sheared galaxies aren’t visually well emulated as an artifact appears in the emulated images such that the emulated profile
doesn’t look like an exponential profile anymore. The last column of Fig. 8 is an example of this phenomenon. Such artefacts
occur during image generation by inverse PCA, we train another generative model on this dataset in Sect. 3.2 to fix this issue.

The same PCA pipeline is then applied on the COSMOS-type dataset. The number of components is set to M = 20 to explain
97.7% of the variance of the data. The threshold of explained variance ratio is reduced here because a small part of the total
variance of the data is related to the noise in training set. We aim here at recovering only the principal components only related to
the galaxies in our dataset. Before controlling dependency between physical parameters and latent variable, we need to verify that
is able to reproduce more complex images than analytical profiles, Fig. 9. Similarly the first row shows the original COSMOS
images. The second row plots the reconstructed image after basis truncation and last row images are noisy versions of second
row images, to confirm that reconstructed images with Gaussian noise are visually similar to original COSMOS images. PCA
seems to be able to generate realistic galaxies when they are close to simple profiles but fails to reproduce more sophisticated
profiles as galaxies flagged with a red star Fig. 9. Moreover, dependencies between physical parameters and latent variable are
more difficult to notice in point-wise dependency plots, as illustrated in Fig. 10. Training a Gaussian Process to interpolate
physical parameters in such a latent space isn’t relevant and emulating COSMOS images with a {GP, inverse PCA} system fails
to capture more complex structures. We next explore other methods that might overcome PCA-GP limitation.

3.2 Emulation with VAE and GP
In this section, we explore another generative model, a Variational Autoencoder, associated with Gaussian Processes
to emulate more realistic analytical profiles and COSMOS images. VAE and GP emulator is expected to fix or im-
prove PCA issues highlighted in the previous section. A Variational AutoEncoder (VAE) is an unsupervised genera-
tive model designed to, given a training data, generate new samples from the same distribution. VAEs are a subset
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Truncation ∼ 99.5%a)

b)

Figure 6: a) Explained variance ratio (%) versus number
of components in truncated basis for a PCA performed on
512 analytical profiles generated with GalSim in Sect. 2.1.1.
The truncation (in red) is performed such that linear combi-
nations of the first principal components statistically explain
∼ 99.5% of the variance of the data. b) The 12 first compo-
nents (from highest to lowest individual explained variance
ratio) composing the truncated basis B in Eq. 1.

Galaxy radius

Figure 7: Point-wise dependency scatter plot for the first
2 dimensions of the latent vector z in Eq. 1 calculated on
the 512 analytical profiles dataset generated with GalSim
in Sect. 2.1.1. A color is assigned to each point according
to the radius of the related simulated galaxy.

Original images

Reconstructed images with PCA and GP interpolation

Figure 8: Visualisation of PCA-GP emulation of analytical
profile images. Top row: Original COSMOS images to be
reconstructed. Bottom row: Reconstructed COSMOS images
with PCA and GP interpolation.

Original COSMOS images

Reconstructed COSMOS images with PCA

Reconstructed noisy COSMOS images with PCA

* *

*

Figure 9: Visualisation of PCA emulation of COSMOS im-
ages. Top row: Original COSMOS images to be reconstructed.
Middle row: Reconstructed COSMOS images with PCA. Bot-
tom row: Reconstructed COSMOS images with PCA and
Gaussian noise added.
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Figure 10: Point-wise dependency scatter plot for the first 2 dimensions of the latent vector z in Eq. 1 calculated on the
COSMOS-type dataset presented in Sect. 2.1.2. A color is assigned to each point according to the shear parameters q of the
related galaxy.

of generative models with approximate (but explicit) density estimation. Given a training data x, they define an un-
tractable density function with latent variable z, pθ(x) =

∫
pθ(z)pθ(x|z). This density function cannot be optimized

toward the network parameters θ directly. In practice, it is derived and a lower bound of the likelihood is optimized.

Figure 11: Probabilistic model of Variational Autoencoders:
illustration.

VAEs, unlike Autoencoders, allow to sample from the model
to generate data. Following the general architecture of a VAE
detailed in Fig. 11, the generative model named here as prob-
abilistic decoder, should be able from a sampled latent vector
z. This latent variable is a low-dimensional representation
capturing the main features of our dataset, to sample from a
true conditional pθ(x|z) a realistic generated output x′. That
latent vector z is sampled from a true prior pθ(z) usually cho-
sen Gaussian such that z ∼ N (µ,Σ), where Σ is a diagonal
matrix of diagonal σ. The training aims at estimating the true
parameters θ of the model. The intractability of the likelihood
and the posterior density leads to introduce an encoder net-
work which takes as input x and estimates a posterior qφ(z|x),
with φ parameters of the encoder, which approximates the pos-

terior pθ(z|x). Both encoder and decoder produce distributions over z and x and sample from this distribution to obtain z and x′.
The loss function l(φ, θ) detailed in Eq. 2 used to optimize parameters φ and θ is a lower bound of the log-likelihood log pθ(x).

l(φ, θ) = −Ez∼qφ(z|x) [log pθ(x|z)] + KL [qφ(z|x)||p(z)] (2)

The training is thus maximizing this lower bound composed of two terms : the negative KL-divergence between the posterior
qθ(z|x) and the prior pθ(z) and the log-likelihood of pθ(x|z). This means that the training is optimizing toward φ and θ in order
to make approximate posterior close to prior and reconstruct input data.

In practice, encoder and decoder parts of VAEs are designed as neural networks with different kind and number of layers
depending on the task. Our VAE consists of convolutional layers (4×4 kernels and a ReLU activation function), that are expected
to efficiently extract features from images. The general architecture of VAEs we work with in this work is detailed in Fig. 11. As
the architecture of a VAE can rely on non-linear transformations, it is more likely to extract complex features from the data than
PCA and thus provides a non-linear low dimensional representation of the data.
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Figure 12: Overall architecture of Variational Autoencoders used as generative models in this work, either trained with analytical
profile images or COSMOS images.

Once the network is well trained to reproduce each input data, the encoder part is no longer used and the proper generative
model is the probabilistic decoder. As in Sect. 3.1, if possible, a GP is trained to interpolate a set physical parameters (related to
training images) to the latent space established by the training of a VAE. New galaxy images are then emulated from physical
parameters to a latent variable by GP interpolation and from a latent variable to a realistic image by VAE-decoding.

We apply the above pipeline to a training set composed of 512 analytical profiles generated in Sect. 2.1.1 and we
create a 64 images testing set from physical parameters sampled with a latin hypercube scheme. We set the dimen-
sion of the latent space to 20, a trade-off between the number of components used in Sect. 3.1 and the need of a
low-dimensional latent space. The VAE training converges very fast after about a hundred epochs. Before any GP
training, Fig. 13 illustrates a dependency between physical parameters and latent variables through a point-wise depen-
dency plot of the first two dimensions of the latent space, where a color related to the galaxy has been assigned to
each point. The first colorbar matches galaxies from the testing set and the second one galaxies from the training set.

Figure 13: Point-wise dependency scatter plot for the first 2
dimensions of the latent vector z calculated on the analytical
profiles dataset presented in Sect. 2.1.1. A color (copper col-
orscale for testing set images and yellow colorscale for training
set images) is assigned to each point according to the flux of the
related simulated galaxy.

As mentioned earlier in Fig. 7, a clear dependency is observed
between fluxes of galaxies and the first two dimensions of
the low-dimensional representation of the data established
by VAE training. Such dependency is similarly noticed for
other physical parameters associated to our dataset. After
GP training, we visually control Fig. 14 that our emulator,
composed of GP interpolation and VAE decoding, is able to
reproduce, from the same physical parameters, similar profiles
(2nd row) than GalSim simulation (1st row). Almost no dif-
ference can be detected between simulations and emulations,
even for very sheared galaxies (5th and 7th images) that are
badly reconstructed with PCA and GP emulation. The major
visual issue of emulating analytical profiles with PCA and GP
is here solved by replacing the generative model by a VAE.
Further validation tests are performed in Sect. 4.

Next, a similar VAE is trained on reproducing a subset of COS-
MOS postage stamps introduced in Sect. 2.1.2. The training
is first performed on ∼ 20000 COSMOS-type images dataset
to reduce computational time but still assess our emulator per-
formances on a reasonably trained model. A training on the
whole dataset will be performed later. As COSMOS images
are more complex images than analytical profiles, we suppose
there are more features to extract from this dataset and we set
the latent space dimension to 32. VAE training converges after
∼ 4000 epochs. Before connecting the interpolator, we assess

9
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Original images

Reconstructed images with VAE + GP

Figure 14: Visualisation of VAE-GP emulation of analytical
profile images. Top row: Original images to be reconstructed.
Bottom row: Emulated images with VAE-GP.

Original COSMOS images

Reconstructed COSMOS images with VAE

Reconstructed noisy COSMOS images with VAE

* *

Figure 15: Visualisation of VAE generation of COSMOS im-
ages. Top row: Original COSMOS images to be reconstructed.
Middle row: Reconstructed COSMOS images with VAE
trained on COSMOS images. Bottom row: Reconstructed
COSMOS images with VAE and Gaussian noise added.

the viability of the VAE in reproducing galaxies as shown in Fig. 15. The first row shows the original COSMOS images, the
second row the reconstructed images with VAE and last row images are noisy versions of second row images. Third row galaxies
should be visually close to original COSMOS images. Given the higher complexity of these COSMOS-type galaxy images
generating problem than analytical profiles generation, we cannot expect as good results as those shown Fig. 14 mainly due to
noise corruption and large heterogeneity of profiles in COSMOS images. Galaxies seem to be well reproduced by the encoding
and decoding process, expect for very flat galaxies (flagged galaxies in Fig. 15), that are reconstructed shrunk but thicker. This
may be because of under-representation of very flat galaxies in the dataset. This problem is not solved yet but improvements to
deal with under-representation are proposed Sect. 5. Then, we try to visualize some dependency between physical parameters and
latent variables of training and testing sets Fig. 16.a), through point-wise dependency plots of 2 dimensions of the latent space
where each point in gray-scale is related to a galaxy image in the training set and each point in orange-scale to a galaxy image in
the testing set. Each point varies in gray or orange level according to the half-light radius of the matching galaxy. In this plot in
particular and in the majority of point-wise dependency plots, dependency between physical parameters and latent variable is
difficult to observe. Therefore, we use UMAP (Uniform Manifold Approximation and Projection), a non-linear dimensionality
reduction method for visualization based on geometry and topology. In this case, the idea is to project the dimension of the latent
space to a 2-dimension space to visualize this projection and the projected value of latent variables. This can be a better visual
indicator of the dependency between latent variables and physical parameters than point-wise dependency plots, that doesn’t take
into account every dimension of the latent space. Fig. 16.b) shows the UMAP plot of the latent space related to the VAE trained
with COSMOS images, with colors corresponding to galaxy half-light radius. A dependency is indeed clearly noticed in this
plot, especially for high half-light radius (hlr) galaxies. However, the difference between very low and low hlr galaxies, in the
bottom-right part of the plot, is hardly distinguishable. As a matter of fact, no GP we trained was able to effectively interpolate
from physical parameters to this latent space. The reason could be that the conditional distribution of latent variables given
physical parameters is not as simple as a Gaussian and a more complex interpolator or conditional density estimator is needed
here.

3.3 Emulation with VAE and MAF
This section explores the option of considering a density estimator neural network instead of a Gaussian Process interpolator to
map from physical parameters to latent variables of the VAE trained on COSMOS images previously. Masked Autoregressive
Flows (MAFs) provide an estimation of a joint density p(x) of a set of variables x based on a joint interpretation of autoregressive
models, a neural-network like function that is invertible, and normalizing flows, that map the distribution to a normal distribution
from which we can easily sample. This joint density p(x) can be decomposed into a product of 1-dimensional conditionals,
parametrized in autoregressive models as Gaussian such that :

p(x) = Πip(xi|x1:i−1), where p(xi|x1:i−1) = N (xi|µi, (expαi)
2)

10
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Figure 16: a) Point-wise dependency scatter plot for 2 dimensions of the latent vector z calculated on the COSMOS-type dataset
presented in Sect. 2.1.2. A color (orange colorscale for testing set images and gray colorscale for training set) is assigned to each
point according to the half-light radius of the related galaxy. b) Uniform Manifold Approximation and Projection plot of latent
variables over training and testing sets. Colorbars stand for both plots.

with µi = fµi(x1:i−1)
αi = fαi(x1:i−1).

This allows to write this data generation equation :

xi = f(ui), with ui ∼ N (0, I) and f(ui) = ui expαi + µi.

f is here easily invertible such that :

ui = f−1(xi) where f−1(xi) = (xi − µi) exp−αi.

Thus, the determinant of the Jacobian of f−1 is easily computable :
∣∣∣det∂f

−1

∂x

∣∣∣ = exp−
∑
i αi, which allows this autoregressive

model to be seen as a normalizing flow where p(x) = π
(
f−1(x)

) ∣∣∣det∂f
−1

∂x

∣∣∣ where π(·) ∼ N (0, I). The function f can
be interpreted as an invertible and differentiable transformation of a strandard normal density into the target density. This
flow is implemented by stacking several Masked Autoencoders for Density Estimation (MADEs). MADE is an adaptation
of Autoencoders to make them estimate a tractable distribution in a single pass through the network as shown in Fig. 17.

Figure 17: Masked Autoencoder for Density Estimation : il-
lustration. The final density is calculated as follows: p(x) =
p(x2)p(x3|x2)p(x1|x2, x3)

An alternative of MAFs used in this work is conditional
MAFs which task is to estimate the conditional joint den-
sity p(x|y) =

∏
i p(xi|x1:i−1,y) given a set of pairs (x,y).

This is done by extending the set of input variables with y
and only modeling conditional densities. y is then an addi-
tional input in each MADE layer of this conditional MAF and
p(x|y) = π

(
f−1(x,y)

) ∣∣∣det∂f
−1

∂x

∣∣∣. In our physical param-
eters p to latent variables z mapping problem, the idea is to
sample a new latent variable z from the estimated distribution
p(z|p) using a conditional MAF as described above taking
x as a latent variable z and y as physical parameters p. So
far, unfortunately, this conditional density estimation with
MAFs does not give acceptable results and this work is still
in progress. Considering this generation problem and depen-
dencies observed in the previous section between physical
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parameters and latent variables, well designed and trained MAFs should, eventually, be able to estimate a relevant conditional
distribution of latent variables given physical parameters.

4 Validation schemes

This section develops validation schemes we perform on emulation methods introduced previously to analyze and compare their
performance. We first evaluate these methods with first order validation tests, which essentially are pixel-to-pixel comparisons.
Then, we assess performances on higher order metrics, designed to confirm that emulator are truly generating realistic galaxy
images that can be used in survey analysis. Validation tests are applied, in this section, to the emulators PCA and GP, and VAE
and GP trained on analytical profiles. Given visual performances of emulators trained on COSMOS images and the difficulty of
mapping physical parameters to latent variables we are currently confronting, we only discuss performances of the VAE model
trained on COSMOS images. Nevertheless, each validation pipeline shall apply on every emulator which generate realistic
galaxy images.

4.1 First order validation
We first evaluate emulators performances on their ability to generate images for which pixel values are close to simulated or real
COSMOS images. To do so, we first plot the histogram distribution of true and predicted pixel intensities. Ideally, these two
distributions are equal. We also plot predicted pixel intensities versus true pixel intensities, showing good one-to-one correlation.
Figs. 18 and 19 show these plots respectively for PCA-GP and VAE-GP emulation, both trained on the analytical profiles dataset
described in Sect. 2.1.1. According to these plots, the distribution of PCA-GP reconstructed pixel intensities is closer to the true
distribution than the distribution of VAE-GP reconstructed pixel intensities. Similarly, the scatter plot of predicted versus true
pixel intensity related to PCA-GP emulation is closer to identity than VAE-GP emulation scatter plot. This result is expected
given the relatively small size of the training set (512 images). We experienced, in this work, that VAE-GP emulator performance
on this dataset increases with training set size, outperforming very fast PCA-GP emulator performance. Fig. 22 shows both
plots for VAE image generation, trained on ∼ 20000 COSMOS-type images, described in Sect. 2.1.2. Predicted pixel intensity
plotted here is non-noisy generated images pixel intensities. Therefore, predicted pixel intensity distribution and predicted versus
true pixel intensity scatter plot are not expected to be as close as, respectively, true pixel intensity distribution and identity. In
particular, the scatter plot is expected to be spread around identity with a deviation corresponding to the standard deviation of the
noise in training images, without any bias. Fig. 22 shows that distributions of predicted and true pixel intensities are very close to
each other and that the scatter plot of predicted versus true pixel intensity is spread around identity with a small bias for very
small intensities, which might be due to bad reconstruction of low-flux flat galaxies.

Then, we assess emulators performance with first order metrics. These first order metrics are pixel-wise quantitative assessments
that measure a reconstruction error based on differences between true and reconstructed pixel values. Let us denote by x original
images to be reconstructed and x′ emulated images, both composed of n pixels, where xi stands for the ith pixel of the image x.
We define the Mean Square Error (MSE) as :

MSE(x,x′) =
1

n

n∑
i=1

(xi − x′i)
2

Ideally, the difference between each pixel xi − x′i is null such that the lower MSE the better. Thus, the distribution of Mean
Square Errors among a set of images is, optimally, a Dirac distribution. Figs. 20 and 21 show MSE distributions, respectively over
training and testing sets of analytical profiles, for both PCA-based and VAE-based emulators. For a 512 images training set and a
64 images testing set of analytical profiles, MSE distribution of the PCA-based emulator is closer to a Dirac distribution than the
VAE-based emulator. This means that, for these datasets, PCA-GP emulator is more able to reconstruct, pixel-wisely, analytical
profile images, than VAE-GP emulator. Again, as experienced, VAE-GP emulator median MSE values on this dataset decreases
with training set size and outperforms PCA-GP median MSE emulator performance. Fig. 23 shows the MSE distribution related
to COMSOS images reconstruction with VAE. This distribution is very close to a Dirac distribution and minimum, maximum
and median MSE value, respectively equal to 8.5e-9, 1.2e-6, 1.3e-8, are very low, with, though, a few outlier values. It highlights
the very good ability of VAE to reproduce COSMOS-type images.

These first validation tests are designed to provide first-order assessments on emulators described in Sect. 3. These tests and
metrics only allow to verify a pixel-wise reconstruction quality. The next section extends validation tests to second and higher
metrics that are more likely to confirm that emulators are able to generate physically realistic galaxy images.
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Figure 18: Left-hand plot: histogram distribution of true and
predicted pixel intensities for PCA-GP emulated analytical
profiles generated in Sect 2.1.1. Ideally, these two distribu-
tions are equal. Right-hand plot : predicted versus true pixel
intensity scatter plot. It should fit or be similar to identity.

Figure 19: Left-hand plot: histogram distribution of true and
predicted pixel intensities for VAE-GP emulated analytical
profiles generated in Sect 2.1.1. Right-hand plot : predicted
versus true pixel intensity scatter plot.

Figure 20: Mean Square Error distribution over the training
set composed of 512 analytical profiles. The blue histogram
is related to PCA-GP emulation and the orange histogram is
related to VAE-GP emulation.

Figure 21: Mean Square Error distribution over the testing
set composed of 64 analytical profiles. The blue histogram
is related to PCA-GP emulation and the orange histogram is
related to VAE-GP emulation.

4.2 Shear measurements, higher order metrics
To validate emulators performances with higher order metrics, we use the shape measurement module of GalSim. This module
contains functions for second order moments evaluation of images following Hirata et al. method [12]. These functions find the
best elliptical Gaussian that match every input image. These moments are represented as a shear distortion in GalSim and shear
parameters estimates of the observed galaxy are returned. The idea here is to estimate shear parameters of emulated images and
confirm that they are matching shear parameters of original images. This validation test, of higher order, allows to verify that our
emulators are able to generate realistic galaxies for physical parameters recovering, beyond visual confirmation and pixel-to-pixel
comparison. Fig. 24 top row shows true (in blue) and predicted (in orange) distributions of shear parameters g1 and g2. Ideally,
these distribution are equal. Fig. 24 bottom row shows predicted shear parameters versus true shear parameters. This scatter plot
should match the identity line. The two first left-hand columns plots stand for the PCA-GP emulator and the two last right-hand
columns stand for VAE-GP emulator. Both emulators has been trained on the analytical profiles dataset. PCA-GP emulator
seems to generate realistic low-shear galaxies, but, as visually observed in Sect. 3.1, high-shear galaxies are reconstructed with a
lower shear than expected. Indeed, a bias is clearly noticed in bottom row scatter plot. This bias does not exist for VAE-GP
emulation, for which true and predicted shear parameters distributions are very close and scatter plot of predicted versus true
shear parameters matches almost perfectly identity. Despite first-order validation tests outperformed by PCA-GP emulation,
VAE-GP seems to be able to generate more physically realistic galaxies, with no bias in shear parameters recovering. Fig. 25
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Figure 22: Left-hand plot: histogram distribution of true
and predicted pixel intensities for VAE generated COSMOS
profiles generated in Sect 2.1.2. Right-hand plot : predicted
versus true pixel intensity scatter plot.

Figure 23: Mean Square Error distribution over the training
set composed of analytical profiles. The blue histogram is
related to PCA-GP emulation and the orange histogram is
related to VAE-GP emulation.

Emulator Analytical profiles
Small size Large size

PCA-GP ++ ++
VAE-GP +/++ +++

Generative model COSMOS-type
PCA +
VAE ++

Table 1: Global performance qualitative assessments for every emulator validated in this section and trained on analytical profile
images (left-hand table) and COSMOS images (right-hand images).

shows shows true (in blue) and predicted (in orange) distributions of shear parameters g1 and g2 (top row) and predicted shear
parameters versus true shear parameters scatter plot (bottom row). Shear estimation has been done for images generated with a
VAE trained on the COSMOS-type dataset. The two first left-hand columns plots stand training set images shear estimation and
the two last right-hand columns stand for testing set images shear estimation. Again, the first two left-hand columns show that
VAE is a very good model to generate realistic COSMOS-type images. Indeed, true and predicted shear parameters distributions
are very close and scatter plot of predicted versus true shear parameters spreads around identity. However, results for testing set
images (right-hand columns) are not as good as for training set images. This highlights an over-training problem. This problem
makes the VAE generative model very good at reproducing training set images but not as good as reproducing image that have
never been seen by the network in the training process. This situation should be solved with a bigger training set size, or a shorter
training.

We also propose to compare emulated images given physical parameters with real or simulated datasets such as the Illustris/TNG
simulation [13] or the Sloan Digital Sky Survey (SDSS) [14] through several indicators of dispersion between distributions of
recovered parameters. An extension of shear measurement validation test could be more generally proving that the emulator is
able to generate physically realistic images compared to other simulated or real datasets. Given a number of physical parameters,
galaxy images are emulated. Then, these images are convolved with a specific PSF and are corrupted with a specific noise model,
depending on the dataset we want our emulator to be compared with. As example, if we want to compare our dataset with images
taken by the Hubble Space Telescope, we will convolve output images from our emulator with an HST PSF and add Poisson
and specific HST noise. This process would generate realistic galaxy images as long as the PSF applied in post-processing is
(non-strictly) larger than the PSF applied to images of the training set. Finally, we compare the distribution of some physical
parameters recovered with extraction algorithms as well as Gini-m20 indexes [15] calculated for the emulated dataset and the
simulated (TNG) or real dataset. This validation test will be performed as soon as a VAE-MAF emulator is working great and is
validated with first and second order tests with a COSMOS-type training set.

Table 1 shows a global performance qualitative assessment for all emulators and training sets introduced in this work. Every
validation scheme is expected to be performed on a well-trained VAE-MAF emulator and its performance are likely to outperform
current COSMOS-type generation and emulate realistic galaxies for other simulated or real datasets.
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Figure 24: Top row: true (in blue) and predicted (in orange) distributions of shear parameters g1 and g2 (top row). Bottom row:
predicted shear parameters versus true shear parameters scatter plot. Left-hand columns: shear estimation for PCA-GP emulated
analytical profile images. Right-hand column: shear estimation for VAE-GP emulation of analytical profile images.

Figure 25: Top row: true (in blue) and predicted (in orange) distributions of shear parameters g1 and g2 (top row). Bottom row:
predicted shear parameters versus true shear parameters scatter plot. Left-hand columns: shear estimation over the training set
for VAE emulated analytical profile images. Right-hand column: shear estimation oveer the testing set for VAE emulation of
analytical profile images.
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5 Future work and conclusion

5.1 Perspectives
In the near future, efforts will be made on three main perspectives. VAE performances on generating realistic COSMOS images
still need to be improved. Better performances of this VAE on testing set images could be achieved in carefully train the network
to avoid over-fitting. Then, general performances could benefit from data augmentation. Indeed, we highlighted in Sect. 2.1.2
that the distribution of physical parameters on the COSMOS-type dataset in not uniform and this leads to bad generation of
outliers that are under-represented in this dataset.

Once a better generator is trained as generating realistic images, we will train a conditioning process to interpolate from physical
parameters to latent variable to be decoded using MAFs. As dependency between physical parameters and latent space has been
shown in Sect. 3.2, we should be able to perform this conditioning, modifying MAF hyper-parameters.

Then, we will actually perform meticulous assessments with Illustris/TNG simulations to prove that the VAE-MAF emulator is
able to generate physically realistic images compared with this simulated data. The general idea is to compare the distribution of
some physical parameters, recovered with extraction algorithms, calculated for the emulated dataset and the simulated (TNG) or
real dataset.

5.2 About other generative models and data
Another perspective in the near future could be training other generative models to figure out which one is the best for this kind
of emulation and study whether or not any mapping from physical parameters is possible. An ensemble of generative models
could be tested here : Vector Quantized VAE (VQ-VAE[16]), Generative Adversarial Networks (GAN[2]) or Pixel Convolutional
Neural Networks (Pixel-CNN[17]).

VQ-VAEs[16] is a generative model for large scale image generation. It is composed of an encoder and a decoder, as a classic
VAE. But the encoded variable is quantized based on its distance to prototype vectors in a codebook. The latent variable is then
replaced by the index of the nearest prototype vector in the codebook. The decoder is trained to map the original image from
this nearest prototype vector. The main advantages of such architecture is the fast training due to quantization and the broader
diversity of trained images. GANs[2] are also generative models designed for large scale image generation but is build with two
neural networks competing with each other. The first network is a generator neural network creating images by mapping random
noise into an image, and the second network is a discriminator, which classifies input images as real or fake. The generator
is trained at fooling the discriminator and the discriminator is trained at recognizing generated images. Larger scale GANs
can generate high-quality and high-resolution images but are known to be challenging to train and evaluate. PixelCNNs[17]
models the joint distribution of pixels of an image as a product of conditional distributions of a pixel given every previous pixel.
Every conditional distribution is modelled by a convolutional neural network. The conditioning given every previous pixel is
modelled as a mask for convolutional layers. Therefore, PixelCNN model is several masked convolutional layers stacked. Pixel
are predicted sequentially, which means that each time a pixel is predicted, it is fed back into the neural network to predict the
next pixel. The major drawback of PixelCNNs is their performance generating realistic images.

As emulating can be done for many applications and many kind of datasets, we would like to perform emulation on diverse
astronomical datasets, for which simulations are very expensive. In the future, we will design a generative model for 3-D
magneto-hydrodynamical (MHD) structures in the Interstellar Medium, 2-D radiative transfer images, and 1-D emission spectra
of star-formation regions.

5.3 Conclusions
In this work, we proposed an ensemble of generative models trained at interpolating physical parameters onto galaxy images.
The project involved creating two different training sets respectively composed of simulated profiles and real COSMOS-type
images. Then, we designed three emulators, made of a generator that emulate images from a latent variable and an interpolator
or conditioning process that map from physical parameters into a latent variable. The first emulator is composed of a linear
generative model, Principal Components Analysis and a Gaussian Process interpolator, expected to be powerful for simple
analytical profiles emulation but outperformed very fast by deep generative models. The second emulator is composed of a
deep generative model, a Variational Autoencoder (VAE), and a Gaussian Process interpolator. As interpolation with Gaussian
Processes can fail when this interpolation from physical parameters to a latent variable is not Gaussian, we proposed to use a
deep conditional density estimator, Masked Autoregressive Flow (MAF). This third emulator made of VAE as a generative model
and MAF as a conditioning process is not functional yet but expected to be in the very near future.
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With several assessment pipelines, from first order to higher order, we demonstrated on analytical profiles the capability of deep
neural networks to emulate physically realistic images compared to linear models as PCA. We then showed that VAE is also
able to reproduce realistic COSMOS-type images. An effort in the near future will be put at conditioning this generative model
given physical parameters and prove its ability to generate realistic images compared with other real or simulated datasets as
Illustris/TNG.

Several generative models, as VQ-VAEs, GANs or PixelCNNs, will also be trained and assessed at emulating realistic images as
detailed in Sect. 5.2. Then, we will experiment emulation on other astronomical surveys, such as MHD simulations or radiative
transfer images.
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A Latin hypercube sampling scheme
Latin hypercube sampling scheme is a statistical sampling method used to generate a near-random sample of values from a
multi-dimensional distribution. The idea is to sample a function of N parameters dividing the range of each parameter into M
equally probable subdivisions separated by hyperplanes. A hypercube is then a latin hypercube if and only if there is only one
sample in each subdivision. In N = 2 dimensions, a sampled grid is a latin square if and only if there is only one sample in
each row and each column, as shown in Fig.26.a). The distribution is here a multivariate uniform distribution and thus, the
M = 5 subdivisions are regularly distributed along each axis. Compared to a random space-filling scheme Fig 26.b), which
does not take into account the previous sampled points in a new sampled point generation, latin hypercube sampling ensures
an optimal representation of the variability of parameters, given a number of samples. Given a number a of subdivisions, latin
hypercube sampling ensures an optimal number of samples compared to an uniform space-filling scheme. Indeed, as highlighted
in Fig.26.c), the number of samples is equal to NM in an uniform space-filling scheme versus M in latin hypercube sampling.
Considering the significant cost of many data generation algorithms, this sampling method is particularly useful to generate a
representative dataset at low cost.
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Figure 26: a) Latin hypercube, b) random, and c) uniform sampling in N = 2 dimensions with M = 5 subdivisons for
parameters p1 and p2.
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Figure 27: Gaussian Processes illustration in 1 dimension.

Gaussian processes offer a non-linear alternative to commonly used
regression problems. The idea is to find a multivariate Gaussian
distribution over any function f such that z = f(p) + ε, where ε
is the error induced by the model. In other words, a GP assumes
that the probability p(z1, ..., zn) = p(f(p1), ..., f(pn)) is jointly
Gaussian with some mean µ(p) and some covariance K(p, λ) where
Kij = k(pi,pj , φ), k is the positive definite kernel function, which
constrains f(pi) and f(pj) to be similar if pi and pj are simi-
lar, and λ hyperparameters. The distribution of functions, from a
prior knowledge i.e. the choice of the kernel function, is updated
with observed samples from that function f by maximizing the log-
likelihood log p(f(p)|p, λ). An example of Gaussian Processes in
1 dimension is given Fig. 27. The original function to approximate
is f(x) = x sin(1.5x) and the observed data is the set of red dots. A
GP learned a distribution of functions that fits observations. The area
in grey is the area for which there is a 95% chance that a realization
of this distribution is contained inside it, and the prediction function
in blue is the mean of these realizations that interpolates from the
red dots. The choice of a kernel here would have had an influence

on the width of the 95% confidence interval and the smoothness of realization functions, depending on the prior knowledge
available on the function to approximate. The main drawback of Gaussian Processes is their computational cost. Indeed, As a
GP is a non-parametric method, the computational cost of its training can be very expensive and grows cubicly with the training
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set size and dimension. The dimensionality reduction performed by any generative model described in this work is thus a key
process to reduce computational costs and training times.
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