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ABSTRACT

Context. To investigate internal stellar structure, inversion techniques have been developed in the past decades. These methods use
helio- and asteroseismology to constrain and build models of stars. Here we present a new approach to infer stellar structure through
inversion.
Aims. To date, most methods used to perform inversions are linear. This can introduce errors, particularly for evolved stars. Thus we
propose here a method based on non-linear inversion.
Methods. The inversions methods are based on the stellar structure equations. Here we propose to build static stellar models with
a flexible composition profile and to use a stellar evolution code to relax these models, i.e. to solve the full non-linear equations of
stellar structure. The composition profiles that are compatible with the stellar oscillation data are sought using a Markov chain Monte
Carlo (MCMC) method.
Results. Our results show that we can indeed obtain a realistic stellar structure using a non-linear inversion. We first apply it to the
Sun and compare the results with those from linear inversion methods. We then apply it to two of the best solar-type stars observed
by the Kepler mission, 16 Cyg A & B.
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1. Introduction

Stellar evolution is the science that deals with the life of stars,
trying to understand how they are formed, how they disappear
and all their major evolutionary stages. In addition to being in-
teresting in its own right, stellar evolution is important not only
for stellar physics but also throughout astronomy. For example,
constraining planet-host stars aids exoplanetary science, and pre-
cisely determining stellar ages is essential for studying the evo-
lution of the galaxy. At smaller scales, it also allows to predict
the future of our Sun, and its interaction with the Earth.

Although stellar evolution theory is widely used and gen-
erally accepted, we know that it is still missing some physics.
In the solar case, it has been highlighted that the standard
models of the Sun are highly significantly discrepant with the
helioseismic observations of the Sun (see for examples Basu
2016; Christensen-Dalsgaard 2021). For examples, there is still
some unexplained discrepancies between the helioseismic sound
speed profile and the model one (). It has also been shown that
diffusion and gravitational settling of all elements heavier that
hydrogen play a very important role when building solar models
(Christensen-Dalsgaard et al. 1993; Basu 2016).

In this project, we will focus on stellar structure by trying to
obtain better constraints on stellar interiors using stellar oscilla-
tion data. Asteroseismology is the science that studies the modes
of stellar oscillation to probe the internal structure and dynam-

ics of stars. It is a powerful tool to study stellar interiors that are
otherwise inaccessible to direct observation.

Although stellar evolution theory is widely used and
generally accepted, we know that it is still missing some
physics. In the solar case, it has been highlighted thanks to
helioseismology—the study of solar oscillations—that the stan-
dard models of the Sun are highly significantly discrepant
with the observational data of the Sun (see for examples Basu
2016; Christensen-Dalsgaard 2021). For example, there are still
some unexplained discrepancies between the helioseismic sound
speed profile and the theoretical one (). It has also been shown
that diffusion and gravitational settling of all elements heavier
that hydrogen play a very important role when building solar
models (Christensen-Dalsgaard et al. 1993; Basu 2016). These
results were obtained thanks to helioseismic structure inversion
methods, which consist in inferring a internal structure of the
Sun using the observed frequencies of its modes of oscillation.
These methods have been proven powerful as they give deep in-
sight into the solar interior.

With the arrival of CoRoT in 2006 (Auvergne et al. 2009)
and Kepler in 2009 (Borucki et al. 2010), asteroseismology un-
derwent a revolution thanks to the precision of their observa-
tions, allowing to probe the interior of stars other than the Sun.
Moreover, these observations are increasing thanks to NASA’s
TESS satellite (Ricker et al. 2014), which has been operating
since April 2018, and the arrival of PLATO, an ESA project,
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Table 1. Characteristics of the Sun (from MESA).

Variables Sun
Age (Gyr) 4.59

M (g) 1.98840987 × 1033

R (cm) 6.957 × 1010

L (erg.s−1) 3.828 × 1033

[Z/X] 0.02293
Teff (K) 5772.0

which is scheduled for the end of 2026 (Rauer et al. 2014). These
satellites have already provided data on hundreds of thousands of
stars, and millions more are expected in the coming years. The
diversity of the observed stars offer a unique laboratory to deter-
mine precisely stellar structure of a wide variety of stars. Indeed,
we are no longer limited to one star but now have access to many
stars at almost every step of stellar evolution. This presents an
opportunity to really test stellar evolution theory.

2. Models & Data

2.1. Sun

As the Sun is the best known star, we have chosen to start with an
analysis of this star. This allows for precise comparison not only
with observations but with previous studies that used different
methods to get similar results (e.g., linear inversion techniques).

2.1.1. Observational data

The main characteristics of Sun are those used in the MESA stel-
lar evolution code (Paxton et al. 2011, 2013, 2015, 2018, 2019).
They are presented in Table 1. The age is from Bahcall et al.
(2005), mass M, radii R, luminosity L and effective temperature
Teff from the IAU 2015 Resolution B3, and the metallicity from
Grevesse & Sauval (1998). Hereinafter all variables with a sub-
script � will refer to the values introduced in Table 1.

The observational oscillations frequencies for the Sun used
in this project are from the Birmingham Solar Oscillations Net-
work (BiSON) (Broomhall et al. 2009; Davies et al. 2014; Hale
et al. 2016).

2.1.2. Model

For this project we are using the MESA stellar evolution code.
The initial solar model used has been calibrated using the so-
lar_simplex_calibration test suite of the MESA code. This test
suit allows to calibrate a 1 M� in order to get an Standard Solar
Model (SSM) (Serenelli 2016). Hereinafter this model is called
the Initial Calibrated Solar Model (ICSM).

The calibration process uses the following variables: the
mixing length parameter αMLT, and the initial value of the abun-
dances of helium, Y0, and heavy elements, Z0. We incorporate
also the settling and diffusion of elements during the evolution-
ary calculations. These variables are adjusted until the radius R,
luminosity L, relative abundance of metals [Z/X], effective tem-
perature Teff , age, and the sound speed profile cs(r), of the model
are as close as possible to the observed solar values. We recall
that relative abundances are defined as

[Z/X] = log(Z/X)star − log(Z/X)� (1)

with (Z/X)� the relative abundance of metals of the Sun.

Table 2. Characteristics of our ICSM.

Variables ICSM
Age(a) (Gyr) 4.610

M (M�) 1.000000000000
R (R�) 1.000001647540
L (L�) 0.999999989931

[Z/X](dex) 0.02293
Teff (K) 5771.99865977

Notes. (a) Age take into account the pre-ZAMS period.

Table 3. Characteristics of 16 Cyg A & B (from Bellinger et al. 2017).

Variables 16 Cyg A 16 Cyg B
Age (Gyr) 6.90 ± 0.40 6.80 ± 0.28
M (M�) 1.080 ± .016 1.030 ± 0.15
R (R�) 1.22 ± 0.02 1.12 ± 0.02
L (L�) 1.56 ± 0.05 1.27 ± 0.04

[Fe/H] (dex) 0.096 ± 0.0026 0.052 ± 0.021

The characteristics of the model resulting from the calibra-
tion are presented in Table 2.

2.2. 16 Cyg A & B

In a second part, we propose to study and test our method on two
solar-like stars observed by Kepler, KIC 2069424–12069449,
also known as 16 Cyg A and 16 Cyg B. These stars form part
of the triple system of 16 Cygni and are two of the best stars
from Kepler data. Results obtained for these two solar analogs
can then be compared with the work of Bellinger et al. (2017)
who use linear inversion techniques to study their internal struc-
ture.

2.2.1. Observational data

The main characteristics of these two stars are presented in Ta-
ble 3. Radii R and luminosity L are from White et al. (2013), ages
and masses, M are from Bellinger et al. (2016) and metallicities
from Ramírez et al. (2009).

The observational oscillations frequencies for 16 Cyg A and
B used in this project are from the Davies et al. (2015). Their
values are given in Appendix ??.

2.2.2. Model

The two initial models used for 16 Cyg A and 16 Cyg B are the
GOE models from Silva Aguirre et al. (2017).

3. Methodology

3.1. Inversion of oscillation frequencies

The frequencies of oscillations modes of a star are set by its in-
ternal structure. It is therefore possible to constrain the internal
stellar structure through an inverse analysis of the observations
of these modes. In order to get information on stellar structure
from oscillations frequencies, one needs to start by perturbing
the equations of motions. Then assuming that the time depen-
dence of a perturbation is of the form e−iωt and considering adi-
abatic oscillations we have (Basu 2016):

−ω2ρξ = −∇P1 + ρg1 + ρ1 g (2)
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with ω the oscillation frequency, ρ the density, ξ the displace-
ment vector associated with the oscillations, P the pressure and
g the acceleration of gravity. The subscript 1 corresponds to the
Eulerian perturbation of a quantity. Eq. (2) gives insight into
the analytical link between oscillation frequencies and stellar
structure. It is clear that these frequencies rely on the spatial
dependence of density, pressure and gravity. This equation is the
basis of the linear inversion technique.

As mentioned earlier, in order to perform this inverse analy-
sis, the equations of motions are perturbed and then linearised.
Bellinger et al. (2020, 2021) pointed out that this method could
introduce errors. Indeed, the linear regime approximation is not
always perfectly justified, particularly for evolved stars. More-
over, this also requires a manual adjustment for numerous free
parameters. This motivates us to study and develop a non-linear
inversion technique.

3.2. Correcting modeled frequencies

Modelling the near surface layers of a star is still a real challenge.
First of all, in stellar atmospheres the diffusion approximation
does not hold anymore for the radiative transport of energy, so
one need to solve the full radiative-transfer equations. Secondly,
convection is still a major problem in the near surface layers,
but it also brings some additional issues: it is inefficient, so it
can not be considered adiabatic anymore; and its interaction with
the atmosphere is very complex. Also, magnetic fields play an
important role in the atmosphere, in particular in the heating of
the chromosphere or in the development of several instabilities
such as waves and flares. Finally, opacities at low temperatures
can be quite uncertain.

All of this is not taken into account in stellar evolutionary
modelling. Most of the time, a simplified model of atmosphere
is used, such as an Eddington-τ relation for a gray atmosphere.
Consequently, modelled frequencies are not directly comparable
with observed ones. This is known as the surface term problem.
As explained in Basu (2016), this introduces a frequency shift
that depends mostly on frequency and is independent of spheri-
cal degree. However, the surface effects are not the only source
of discrepancies between the Sun and standard solar models.

In order to compensate for this frequency shift, several meth-
ods have been developed (Roxburgh & Vorontsov 2003; Kjeld-
sen et al. 2008; Gruberbauer et al. 2012). Because it has been
shown to be the (so far) favorable treatment of the surface term
(Schmitt & Basu 2015; Ong et al. 2021), we work with the
method described in Ball & Gizon (2014). It suggests to add to
the modelled frequencies the following parametrization

δν =
(
a−1(ν/νac)−1 + a3(ν/νac)3

)
/I (3)

with a−1 and a3 being coefficients that are fit for a given stel-
lar model (hence the dependence of the frequency shift on the
model), νac is the acoustic cut-off frequency, and I is the normal-
ized mode inertia. For a given star, the acoustic cut-off frequency
is defined using the scaling relation

νac

νac,�
=

g
g�

(
Teff

Teff,�

)−1/2

(4)

with Teff the effective temperature and the subscript � indicating
the solar value.

However, even if this surface term correction allows a better
agreement between observations and models, it is known that the

differences between the sun and the standard solar model don’t
solely belong to the surface effects. This indeed suggests that the
theroy of stellar evolution and structure misses, or inaccurately
model, some physics.

3.3. Flexible representation of a composition profile

In MESA, a snapshot of the composition profile is set with the ra-
dial evolution of 3 variables: X, Y and Z. The elements contained
in Z depend on which network is chosen. In this work, we are us-
ing two different networks: ‘basic.net’ and ‘pp_cno_extras.net’.
The former contains only 8 species (1H, 3He, 4He, 12C, 14N,16O,
20Ne, 24Mg) and the latter 25 (the previous 8 + 2H, 7Li, 7Be,
8B, 13C, 13N, 13N, 14O, 15O, 17O, 18O, 17F, 18F, 19F, 18Ne, 19Ne,
22Mg). Using one or the other depends on the information we
have on the star we aim to model. Particularly, stars more mas-
sive than the Sun and stars at later phases of evolution need more
detailed nuclear networks. The relative abundance of each ele-
ment is taken from the solar photosopheric composition as de-
termined by either Grevesse & Sauval (1998) or Asplund et al.
(2009). As we know we have the constraint X+Y+Z=1, we only
need to parametrize 2 of the 3 variables. X is always a variable
because we need to ensure that the X profile is strictly increasing
from the centre toward the surface, then we can either chose Y
or Z as the second independent variable.

In the MESA models used here, the composition profile is
discretized in 1500–2000 points. This is too much if we want to
parametrize the profile. Indeed, in our method we would like to
build a model with a structure that allows to get oscillations fre-
quencies as close as possible to the observational data. If we keep
these 1500–2000 points for the composition profile, it means that
the algorithm will need to work with as much input parameters.
This is way to much to get results in a reasonable amout of time.
Consequently, in order to reduce this dimensionality, we use a
P-splines representation of the composition profile. P-splines, or
Penalized B-splines, were developed by Eilers & Marx (1996).
The concept is based on B-splines but with addition of a parame-
ter to control the smoothness of the representation. This smooth-
ness parameter, λ, is optimized using the equation:

Q =
∑

i

(oi − bi)2 + λ
∑

i

(bi − bi−1)2 (5)

where oi is the original value of X, Y or Z at given point in
radius and bi is the build value from the P-splines method. The
main advantage of the technique is that it allows to obtain a faith-
ful representation of the composition profile with only a limited
number of parameters. These parameters, called knots, will be
regularly spaced in term of acoustic depth, which is defined as
(Gough 1990)

τ(r) =

∫ R?

r

dr
c

(6)

with R? being the total radius of the star. Indeed, it is assumed
that no information travel faster than the sound speed. We de-
termined the optimal number of knots as 65 by analyzing the
convergence of the cumulative error on the rebuild profile com-
pare to the initial, as presented on Fig. 1. This value was already
used by Basu et al (?). The position of the knots are showed on
Fig. 2.

Finally, we parametrize the perturbation to the composition
profile, δA, instead of the composition profile itself, A. Then the
new profile will be A′ = A + δA, with A = X, Yor Z. This is
to avoid any problem with discontinuities, particularly the one at
the convective-radiative boundary.
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Fig. 1. Evolution of the relative squared error on the composition profile
build from P-splines methods compare to the original one, as a function
of number of knots.

Fig. 2. Evolution of the X profile as provided in a MESA model of the
Sun and the corresponding position of the knots used for the P-splines
representation.

3.4. MCMC

Now that we are able to build flexible static models of stars and
compare them to asteroseismological data, the next step is to de-
termine which structure allows the best fit to these observations.
This step will be automated using Markov Chain Monte Carlo
(MCMC). This method allows the exploration of the parame-
ter space with the objective to sample from the posterior dis-
tribution. (see e.g. Brooks et al. (2011) for review on MCMC).
Here we work with python package emcee (Foreman-Mackey
et al. 2013). The parameters used are the mixing length param-
eter αMLT and the knots of the X and Y (or Z) composition pro-
files. There are 65 knots per profile with 40 that are located in
the convection zone. As mixing within the convection zone is
efficient, we can consider that the relaxation step will homog-
enize the composition in the whole region, and therefore there
will always be a flat composition profile in the convective zone.
With this assumption the number of parameters is reduced from
65 to 25 per profile. So, in the end the MCMC will work with 51
parameters.

These parameters are the input of a function p which return
a density of probability for a given combination of parameters.
The objective of the MCMC is to maximize this function, which

we define using χ2 function:

p(αMLT, X1, . . . , XN ,Y1, . . . ,YN) = − log(χ2). (7)

The χ2 function is defined as

χ2 =
∑

j

(O j − M j)2

σ2
j

, (8)

with the O j and M j that are respectively the observed and mod-
elled values of oscillations frequencies νi, radius R, luminosity
L, and metal abundance at the surface [Fe/H]. Variables σ j are
the uncertainties on the observed values.

4. Results

4.1. Relaxation step

First, it is important to study the influence this step could have
on the results. The relaxation is performed by MESA using the
relax_initial_composition function. Here we extract the compo-
sition of the ICSM, parametrize it with B-splines and rebuild a
composition profile without adding any perturbation to it. Then
we relax the model over a few time steps. As we can see on Fig. 3
and 4 for the hydrogen and sound speed profile respectively, this
step can introduce some perturbations.

Fig. 3. Evolution of the X profile relative difference between the ICSM
and a relaxed model with the same composition.

Fig. 4. Evolution of the sound speed, c, profile relative difference be-
tween the ICSM and a relaxed model with the same composition.

This is currently under investigation as it could have some
importance when looking at the Sun because of the strong
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Fig. 5. Evolution of radius, R, and luminosity, L, with the mixing length
parameter αMLT for the ICSM.

observational constraints in that case. However, the resulting
relative differences are very small, i.e. less than 0.20% and
0.15% for the X and c profiles, respectively. Thus this will
not be an important issue when studying all others stars as the
uncertainties on observed quantities are larger.

With no perturbation to initial model, we also tried to deter-
mined the effect of varying the mixing length parameter αMLT.
This can be visualized on Fig. 5. We can clearly see that there
is an important impact on both radius and luminosity. Radius is
decreasing and luminosity increasing with αMLT. Also it appears
that there is an optimal value for αMLT that gives values of R and
L both very close to the solar values. This value is αMLT ' 2.2,
which is also the result of the solar calibration.

4.2. Simple Optimizer

In order to test the feasibility of our idea, we have first done a
test with a simple Nelder-Mead optimizer using only 3 param-
eters: αMLT and the first knot in the radiative zone, just under
the convective boundary for the X and Y profile, XCB and YCB.
As an initial guess for the parameters we used the values from
the ICSM. The objective function of the optimizer is the same
as Eq. (7). The optimization run outputs for αMLT, XCB and YCB
a change of ∼ −5%, ∼ 0% and ∼ −10% compared to their ini-
tial respective values. The impact on the sound speed profile is
presented on Fig. 6.

The resulting sound speed profile exhibits a significant dif-
ference at the location where the composition is perturbed. The
sound speed is increased by approximately 1.2% at maximum.
This is promising as when comparing models to observations,
there is a well-known discrepancy at this location. Generally,
SSM present a sound speed that is smaller than the observed
value (see for example Fig. 39 of Christensen-Dalsgaard 2021).

The objective of our project is to use constraints from helio-
and asteroseismology to obtain realistic models of stellar struc-
tures. Then, the echelle diagrams presented on Fig. 7 compared
the modelled frequencies with the observed ones in the range 1
mHz to 4mHz and for harmonic degrees ` = 0, 1, 2 and 3. On
these diagrams the frequencies are represented modulo ∆ν, as
given by (Christensen-Dalsgaard 2014)

νn,` = ν0 + k∆ν + ν̃n,`, (9)

Fig. 6. Evolution of the sound speed, c, profile relative difference be-
tween the ICSM and an optimized model with perturbed composition.

with ν0 a reference frequency and k an integer such that ν̃n,` is
between 0 and ∆ν. The large frequency separation, ∆ν, is the
difference in frequency between two modes of the same degree
and of consecutive radial order

∆ν` = νn+1,` − νn,`. (10)

The modelled frequencies are computed using the oscillations
code GYRE (version 6.0) (Townsend & Teitler 2013; Townsend
et al. 2018). First we can notice the effect of correcting the mod-
elled frequencies using the the surface term correction described
in Section 3.2. The modelled frequencies are represented with
blue dots and the corrected ones with orange dots. As expected,
the effect of the correction increases with frequencies. The agree-
ment with helioseismic data is indeed better after correction.

Next, comparing the corrected modelled frequencies for the
ICSM (left panel) and the optimized model (right panel), the lat-
ter shows a better agreement with observations. This suggests
that the optimized structure could be a more realistic representa-
tion of the actual structure of the Sun. However, this study needs
to be continued in order to confirm or not such suggestion. In-
deed, even if we obtain a better agreement for sound speed and
oscillations frequencies, the luminosity, L = 0.993834L�, of the
optimized model agreed a little bit less with the observed value
than the ICSM, L = 0.999999L�. This can appear like a rel-
atively small difference, but as investigating the details of the
theory of stellar structure and evolution, we would like to be as
precise as possible.

Moreover, the main problem with a simple optimizer like the
Nelder-Mead used here, is that it only gives one possible solu-
tion to the problem. What we have here is a local minimum and
we would like to obtain the global minimum. It is for this rea-
son that we are implementing an MCMC method to get the full
range of stellar structures that are supported by the observational
data. This is undergoing work but some preliminary results are
presented in the next section.

4.3. Preliminary results with the MCMC

This is ongoing work and the results will be published later.

5. Conclusions

This study presents an innovative method for stellar inversion
based on a non-linear approach.
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Fig. 7. Echelle diagrams comparing the modeled (blue filled circle) and corrected (orange filled circles) frequencies of ICSM (left panel) and an
optimized model (right panel), with observations (green empty circles) of harmonic degrees ` = 0, 1, 2 and 3.
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