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ABSTRACT

We study a model of the propagation of inertial waves into a corotation resonance in a conically

and cylindrically differentially rotating convection zone. We focus on the resulting fully non-linear

development of a critical layer with sets of direct numerical simulations using the Dedalus code. We

first compare linear simulations with theory to verify the code, finding good agreement. Then we

perform non-linear simulations where we find that applying linear theory predictions for the evolving

mean zonal flow (a quasi-linear approach) does not account for observed reflection and absorption

coefficients in either the case when the critical layer is turbulent or the critical layer is laminar but

has evolved significantly from its initial flow profile. Thus we find growth of mean flows in the radial

direction and nonlinear effects may be important for understanding the efficiency of inertial waves as

a tidal dissipation mechanism in planetary and stellar convection zones.
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1. INTRODUCTION

Tidal interactions between a host body and an orbit-

ing, perturbing body can affect the secular evolution of

the perturber’s rotation and orbit (Ogilvie 2014; Mathis

2015, 2019; Barker 2020). For host bodies with con-

vection zones in their outer regions, such as low mass

stars and gaseous giant planets, inertial waves may be

excited and play an important role by allowing a net

exchange of angular momentum when they are eventu-

ally dissipated (Ogilvie & Lin 2007). Propagating in-

ertial waves in a shellular convective region can dissi-

pate either through viscous dissipation (Maas & Lam

1995; Rieutord & Valdettaro 1997), wave breaking, or

by absorption if they reach a shear region with a corota-

tion resonance (Baruteau & Rieutord 2013; Guenel et al.

2016), similar to internal gravity waves reaching a crit-

ical layer in a stably stratified shear region. In many

host bodies, inertial waves dissipation may exceed that

of equilibrium tidal dissipation and gravito-inertial wave

dissipation in the radiative zone by several order of mag-
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nitudes (Ogilvie & Lin 2007). Thus the study of inertial

wave dissipation is important for understanding the long

term tidal evolution of these astrophysical systems.

We focus on the particular problem of an inertial wave

propagating into a velocity shear region in a local model

with a corotation resonance and understanding the re-

sulting evolution of the mean flow and the absorption,

reflection, and transmission of the wave. A corotation

resonance occurs when the horizontal phase velocity,

ω/kx, of a propagating wave matches the local mean

flow speed, U (i.e. U − ω/kx = 0 for a flow in the

x-direction). Previous studies of this process investi-

gated the linear theory prediction for absorption, reflec-

tion, and transmission coefficients as a function of the

relevant dimensionless parameters (Astoul et al. 2021).

However, realistically the waves may break and create a

turbulent critical layer that may affect properties of the

wave propagation, particularly for astrophysically large

Reynolds numbers. The mean flow itself will evolve due

to the deposition of momentum by the waves and thus

additionally affect wave propagation through the region.

We implemented a local shearing box model and run sets

of direct numerical simulations using the Dedalus code

to study these linear and nonlinear processes.
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Figure 1. Sketch of local box model embedded in global
geometry. Taken from (Astoul et al. 2021).

2. EQUATIONS AND SETUP

2.1. Equations

We consider a local shearing box at an angle θ0 from

the pole in a rotating star undergoing conical differen-

tial rotation with rotation vector ~Ω as shown in Figure

1. This setup also captures the case of cylindrical differ-

ential rotation for any latitude if the angle θ0 = 0. The

local Cartesian coordinate system sets x in the zonal di-

rection, y in the −θ̂0 polar direction, and z in the radial

direction. Periodic boundary conditions are imposed in

the x and z directions, while stress free boundary condi-

tions are imposed in the direction of wave propagation

(y direction). Following the derivation in Astoul et al.

(2021), we use the non-linear dimensionless fluid equa-

tions for the perturbations {u, v, w, ρ} around the basic

state:

Dtu− fv + f̃w = −∇xP +Re−1∇2u (1)

Dtv + fu = −∇yP +Re−1∇2v + F (x, y, z, t)

(2)

Dtw − f̃u = −∇zP − ρ+Re−1∇2w (3)

Dtρ = −vf̃∂yU +Re−1∇2ρ (4)

∇ · ~u = 0 (5)

where Dt = ∂t+~u ·∇, ~u = (u′, v, w), u′ = u+U(y), and

U(y) is the mean flow profile. F (x, y, z, t) is the forc-

ing function localized in the y direction for the inertial

waves. In this dimensionalization, 2~Ω = 2Ω(0, f̃ , f) ≡
(0, f̃ , f) ≡ (0,− sin(θ0), cos(θ0)), where 2Ω = 1 is used

for the time units.

2.2. Setup

We impose a mean shear flow in the region 0 < y < 1

with U(y) = Umaxy for the linear profile or U(y) =

Umax tanh((y − 0.5)/0.5) for a smoother tanh profile,

where Umax is a constant parameter. Inertial waves

(IWs) with wavevector k = (kx, ky, kz) are generated

in a forcing region that is placed one y-wavelength to

the left of the shear region at y = −2π/ky. Damping

regions are placed to the left of the forcing region and to

the right of y = 1 + 2π/ky with a width of 3π/ky. This

way leftwards propagating IWs damp right away while

rightward propagating IWs enter the shear region, and

any transmitted waves then get dissipated in the right

end of the domain. The maximum velocity at the end of

the shear region is chosen to be larger than the critical

velocity (i.e. horizontal phase speed) of the forced iner-

tial wave, Umax > Uc ≡ ω/kx = kz/(kxk), and thus the

critical layer will lie inside the shear region. Lastly, the

x and z lengths of the box are a single wavelength of the

forced IW, Lx = 2π/kx and Lz = 2π/kz respectively.

3. DIMENSIONLESS PARAMETERS

For comparison with Astoul et al. (2021), the time

units are (2Ω)−1 = 1 and the length is scaled by

the length of the shear region being 0 ≤ y =

y(physical)/Lshear ≤ 1. For θ0 = 0 the dimensionless

parameters are ω/(2Ω) = kz/k, shear Rossby number

R0 = Umax/(Lshear · 2Ω) = ω/(2ΩkxLsheary0), location

of corotation resonance y0, αz = kz/kx, αy = ky/kx,

kx = k
(physical)
x Lshear (the choice of kx sets the ratio

λx/Lshear.), A/(2ΩLshear) (amplitude A of y-velocity

forcing), and Ekman Ek = ν/(2ΩL2
shear). Note I

have followed the definition 0 < y0 = ω/(R0kx) =

Uc/Umax < 1 for the location of the critical layer. In

this notation, the dispersion relation is the no-shear re-

gion is

ω =
αz√

1 + α2
z + α2

y

(6)

R0 =
ω

kxy0
(7)

Assume we want to set a particular ω and R0 in the

simulation with free, dimensionless,“input” parameters

y0, αz, αy, and kx. We have 2 equations and 4 vari-

ables. Setting ω determines a relation between αz and

αy through the dispersion relation. Setting R0 has some

freedom where we can either fix some kx and then vary

y0 OR fix y0 and then vary kx. In order to spread numer-

ical resolution equally along the shear region, the critical

layer is always set at the fixed value y = y0 = 0.5 so R0

is set by varying kx in the input to the simulation.

4. LINEAR WAVE PROPERTIES

We only consider the case θ0 = 0 so far, equivalent

to the case of cylindrical differential rotation. Outside

the forcing and shear regions the plane wave solutions

p = p0e
i(~k·~x−ωt) for θ0 = 0 are given by:
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ω = ±kz
k

(8)

u = p

(
−iky − ωkx

1− ω2

)
(9)

v = p

(
ikx − ωky

1− ω2

)
(10)

w = p

(
kz
ω

)
(11)

~vg =

(
−kxkz
k3

,
−kykz
k3

,
k2x + k2y
k3

)
(12)

The forcing region represents a source of IWs, such as

launching of IWs from a critical latitude on the edge of

a radiative core. We are then studying the subsequent

propagation and dissipation of the wave.

By looking at the group velocity, a wave train moving

in the direction of +y needs a negative value of ky <

0 for kz, ω > 0. Thus, an inertial wave approaching

a critical layer requires all three components of k and

therefore requires a three dimensional simulation (unlike

for internal gravity waves which can be simulated in two

dimensions, the plane of the horizontal kh and vertical kz
wavenumbers). ky 6= 0 and kz 6= 0 in order that vg,y 6= 0,

while kx 6= 0 so that the wave can interact with the shear

flow and have a corotation resonance (ω−kxU(y0) = 0).

The zonal and radial (vertical for θ0 = 0) momentum

flux transported by the plane wave is given by (suppos-

ing v = v0Re[ie
i(~k·~x−ωt)] as in the simulation):

Fuv(y, t) = 〈uv〉xz =

(
(ω2 − f2)kxky

(fkx)2 + (ωky)2

)
v20
2
, (13)

Fwv(y, t) = 〈wv〉xz =

(
(ω2 − f2)kzky

(fkx)2 + (ωky)2

)
v20
2
. (14)

We immediately see that Fuv/Fwv = kx/kz, depend-

ing on the direction of the wavenumber. Additionally

both the zonal and radial components of the mean flow

will pick up momentum when the waves dissipate. This

would be similar to the internal gravity wave case if the

horizontal wave number was not aligned with the mean

flow.

An example of the linear case reproduced in the nu-

merical setup is shown in Figure 2 where non-linear

terms are present but negligible. We drive a low am-

plitude wave with |v0|/Uc = 0.01 and after a crossing

time of the wave, it is clear that there is no transmis-

sion into the region y > 1 and some reflection back into

y < 0 (since the wave shown by the blue curve is slightly

out of phase with the analytical incoming wave shown

Figure 2. Example of a small amplitude (linear regime)
inertial wave driven in the setup after a single wave crossing
time based on the y direction group velocity. Yellow is the
forcing region, green are the damping regions, red is the shear
region, and vertical dashed line at y = 0.5 is the corotation
resonance location. Blue is the v(x = 0, y, z = 0, t = 40 ∗
2π/ω) amplitude versus y. Orange is the predicted sine wave
propagating to the right if there was no shear region present.

Figure 3. Momentum transport in a simulation with
kx/kz = 4. Top: The XZ averaged wave flux in the y di-
rection of the x momentum (blue) and z momentum (red)
components. Dotted lines are analytical predictions. Bot-
tom: Changes in the mean flow profile relative to t = 0 in
the x (blue) and z (red) directions.



4 V. Skoutnev, A. Astoul, A. J. Barker

Figure 4. Reflection coefficient vs time in the simulation
(blue). Horizontal gray dashed line is linear theory prediction
for the initial flow profile. Orange dots are linear theory
predictions for the modified x-direction flow profile at that
time, U(y, t).

by the orange curve). The reflection and transmission

coefficients agree well with the linear prediction (pre-

dicted reflection coefficient shown as dashed gray line).

Components of the momentum flux and the associated

changes in the mean flow components are shown in Fig-

ure 3. The entire momentum flux clearly is absorbed in

the critical layer for these parameters and the associated

mean flow growth of the components is the same ratio as

the magnitude of the momentum flux components (i.e.

Fuv/Fwv = 4). This is all to say at the linear regime

of small amplitude waves early in the simulation agrees

well with predictions from linear theory when the mean

flow has not changed significantly from its initial linear

profile.

5. CRITICAL LAYER DEVELOPMENT AND

EVOLUTION

5.1. Laminar Critical Layer

While a forcing a small amplitude wave results in

a steady state reflection and transmission that agrees

with linear theory at early times, the mean flow profile

will slowly evolve over longer time scales and leads to a

change in the reflection coefficient over time. Figure 4

shows this phenomenon where an early steady state is

reached around ωt/2π = 25 with a reflection coefficient

of ≈ 0.08 that matches linear theory. However, as time

progresses R(t) decreases with time down to ≈ 0.06 by

the end of the simulation. Does a quasilinear approach

predict this behavior? To test this, we substitute the

mean x-direction flow profile in the simulation at var-

ious times U(y, t) into the linear theory and plot the

resulting prediction at the orange dots. The quasilinear

correctly predicts that R decreases slightly at first, but

it clearly fails to account for further evolution of R.

We presume that this is likely because the linear the-

ory solver only includes a mean U(y) but not the addi-

tional W (y, t) = 〈w(x, y, z, t)〉xz that is being generated

by the 〈wv〉 component of wave momentum flux, which

becomes significant at later times. Thus it appears to

be important to consider both the x and z mean flows

generated by a flux of inertial waves to understand the

evolution of the critical layer already in the laminar case.

5.2. Turbulent Critical Layer

Figure 5. Reflection coefficient vs time. We vary the vis-
cosity in the simulations parameterized by Re = ν−1, while
keeping everything else constant. The laminar to turbulent
transition clearly occurs between Re = 2e5 and Re = 4e5.

If either the viscosity is decreased or the amplitude of

the wave is increased, then the inertial wave will break

right before reaching the corotation resonance and cre-

ate a turbulent critical layer. This unfortunately re-

quires a large number of modes to resolve the smallest

scales, but may just be marginally possible. In Figure

5 we show the reflection coefficient for a series of runs

where the viscosity ν (labeled as Re = ν−1) is steadily

decreased. It is clear that at some critical viscosity the

reflection coefficient suddenly begins to jump and that is

when visually the critical layer transitions from laminar

to more turbulent (not shown). An even lower viscosity

causes the waves to break earlier in time.

The exact criterion for the size of the viscous scales is

currently unclear to us so we have so far done a brute

force resolution scan in the X and Z modes at the low-

est viscosity to see what minimum resolution is needed,
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Figure 6. Reflection coefficient vs time. For the highest
Reynolds number run in Figure 5 where Re = 8e5, we carry
out a resolution scan in the number of x and z modes. The
notation is ~N = (Nx, Ny, Nz), the number of spectral modes
used in each direction. Simulations with more modes are sig-
nificantly more expensive and therefore were not integrated
as in time.

shown in Figure 6. It seems that while a lot of modes

are needed in the y-direction, not very many modes are

needed in the x and z directions since around 32 modes

and above seem to give similar plots of R(t), with later

differences probably attributed to chaotic temporal evo-

lution.

In any case, assuming the moderate resolutions in Fig-

ure 6 are resolved, it is clear the R(t) on average has

significantly increased above it’s linear theory predic-

tion and above the more viscous runs with lower Re.

Thus is it clear that turbulent critical layers behave sig-

nificantly differently than laminar ones. This motivates

further work to explore turbulent inertial wave critical

layers.

6. FUTURE WORK

One remaining goal in the laminar critical layer case is

to understand the evolution of the reflection coefficient

with time. Over any short time period, the setup should

be well approximated by linear theory and it would be

interesting to know if the mean flow in the z direction

plays an important role here.

In the turbulent critical layer case, there remain many

open questions to pursue. What is the criterion for tran-

sition between the laminar and turbulent states? In

other words, for what amplitudes and viscosities do the

waves break in the shear region? Such a criterion would

be important for categorizing which state different as-

trophysical host and companion systems may be in. The

obvious next question, is what do turbulent critical lay-

ers generally do to the reflection, absorption, and trans-

mission coefficients compared to the linear case? This

may require a large parameter scan to see if any patterns

emerge.

7. CONCLUSION

In differentially rotating stars or giant planets, inertial

waves can be efficiently absorbed in critical layers, which

could lead to important tidal dissipation and associated

secular evolution of orbiting bodies. We have found that

the reflection and absorption properties of waves from

these layers is dependent on the wave amplitude and

Reynolds number. This motivates further work on this

problem to explore the importance of critical layers for

tidal dissipation.
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APPENDIX

A. FORCING FUNCTION RESPONSE IN SHEARLESS REGION ∂Y U(Y ) = 0

We need the normalization factor between the forcing amplitude and the amplitude of the resulting wave so that

we can have direct control over v0, the amplitude of the driven wave in the y direction. Following Su et al. (2020),

we assume a form v = v(y)ei(kxx+kzz−ωt) for all variables (i.e. the steady state oscillatory response) and solve for the

differential equation for v(y). The forcing function is

F (x, y, z, t) = ei(kxx+kzz−ωt)
e−

y2

2δ2

√
2πδ

. (A1)
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where δ is the half-width of the forcing region. The equations (now all only a function of y) then are

− iωu− fv + f̃w = −ikxP, (A2)

− iωv + fu = −∂yP + F, (A3)

− iωw − f̃u = −ikzP, (A4)

kxu− i∂yv + kzw = 0. (A5)

We need to eliminate P, u in favor of v in order to substitute into the second equation. Incompressibility already gives

w = −(kxu+ kyv)/kz. Some algebra gives:

P (y) =

(
−i(ω2 − f̃2)∂y + iωfkx − ff̃kz

−ω(k2x + k2z)

)
v(y) (A6)

u(y) =

(
(ω2k2x + f̃2k2z)∂y + ωfkxk

2
z + if f̃k3z

ω(k2x + k2z)(f̃kz − iωkx)

)
v(y) (A7)

Now we can substitute equations A3 with A6 and A7:

(
−iω +

ωf2kxk
2
z + if2f̃k3z

ω(k2x + k2z)(f̃kz − iωkx)

)
v (A8)(

iωfkx − ff̃kz
−ω(k2x + k2z)

+
f(ω2k2x + f̃2k2z)

ω(k2x + k2z)(f̃kz − iωkx)

)
∂yv (A9)

+

(
−i(ω2 − f̃2)

−ω(k2x + k2z)

)
∂2yv = F (A10)

Simplifying this gives: (
−ω2(k2x + k2z) + f2k2z

ω2 − f̃2

)
v +

(
−2if f̃kz

ω2 − f̃2

)
∂yv + ∂2yv = (A11)(

−iω(k2x + k2z)

ω2 − f̃2

)
F = CF (A12)

This agrees with Eq. 23 in Astoul et al. (2021). The homogeneous solutions (when F = 0) are u(1/2) = eiky,(1/2)y,

where the ky,(1/2) satisfy the following dispersion relation:

−ω2(k2x + k2z) + f2k2z + 2ff̃kzky − (ω2 − f̃2)k2y = 0 (A13)

ky =
−2ff̃kz ±

√
(−2ff̃kz)2 + 4(−ω2(k2x + k2z) + f2k2z)(ω2 − f̃2)

−2(ω2 − f̃2)
(A14)

since ω, kx, kz are considered imposed by the forcing. The Wronskian is thus

W = i(ky,2 − ky,1) = −2i

√
(−2ff̃kz)2 + 4(−ω2(k2x + k2z) + f2k2z)(ω2 − f̃2)

2(ω2 − f̃2)
(A15)

which nicely simplifies to W = −2i|ky| in the θ0 = 0, f̃ = 0 limit, as expected. The steady state particular solution

up is then given by):



Direct Numerical Simulation of Inertial Waves passing through Corotation Resonance 7

vp = −eiky,1y
∫ y

0

eiky,2y
′

W
CF (y′)dy′ + eiky,2y

∫ y

0

eiky,1y
′

W
CF (y′)dy′ (A16)

Focusing on the left term (and defining ~ky,1/2 = (kx, ky,1/2, kz))

−eiky,1y
∫ y

0

eiky,2y
′

W
CF (y′)dy′ =

−AC
W

ei(
~k1·~x−ωt)

∫ y

0

eiky,2y
′− y2

2δ2

√
2πδ2

dy′ (A17)

=
−AC
W

ei(
~k1·~x−ωt)e−

k2y,2δ
2

2

∫ y

0

e−
(y′+iky,2δ

2)2

2δ2

√
2πδ2

dy′ (A18)

=
−AC
W

ei(
~k1·~x−ωt)e−

k2y,2δ
2

2

∫ y+iky,2δ
2

√
2δ

0

e−t
2

√
π
dt (A19)

=
−AC
2W

ei(
~k1·~x−ωt)e−

k2y,2δ
2

2 erf

(
y + iky,2δ

2

√
2δ

)
(A20)

where we have used the definition erf(y) = 2√
π

∫ y
0
e−t

2

dt. The particular solution is thus given by

vp =
−AC
2W

ei(
~k1·~x−ωt)e−

k2y,2δ
2

2 erf

(
y + iky,2δ

2

√
2δ

)
+
AC

2W
ei(
~k2·~x−ωt)e−

k2y,1δ
2

2 erf

(
y + iky,1δ

2

√
2δ

)
(A21)

We set A to a give a final velocity amplitude |vp(y →∞)|/Uc = O(10−2).

Software: Dedalus (Burns et al. 2020)
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