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ABSTRACT

The interior rotation profile for stars is poorly constrained, but is an important quantity to

understand angular momentum transport in stars and stellar dynamos. Kitchatinov & Rüdiger (1999)

models show that radial and latitudinal differential rotation is a function of bulk rotation rate. The

upcoming PLATO mission will make asteroseismic observations of 320,743 stars offering a tantalising

opportunity to understand the relationship between observed surface rotation and differential rotation

for ensembles of stars. In this study we use ensemble asteroseismology to determine the future

possibility of constraining the relationship between latitudinally averaged surface rotation and

radial differential rotation of main sequence stars modelled by Kitchatinov & Rüdiger (1999) using

observations from PLATO. We estimate the uncertainties achievable on radial differential rotation

by considering the expected lower noise-level in PLATO observations. To find the number of stars

expected in an ensemble we use proportionality estimates from catalogues with prior measurements

of stellar surface rotation rates. We develop a two-dimensional functional fit for an ensemble of stars

that can be constrained by surface rotation measurements. We find that in order to sufficiently

constrain the uncertainties in the inverted rotation profiles with PLATO, we will need ensembles of

the order of 104 stars.

Keywords: Asteroseismology — Rotation, Stellar Physics — Differential Rotation

1. INTRODUCTION

Internal rotation in stars critically governs stellar magnetism and stellar evolution. The angular velocity of rotation

changes across radius as well as latitude inside a star, giving rise to differential rotation. This induces velocity shear

which when coupled with magnetic fields drives the stellar dynamo (see Spruit 2002; Brun & Browning 2017; Karak

et al. 2020, and references therein). The observed stellar activity cycles, on the order of tens of years, are a direct

consequence of this. Stellar evolution occurring on the timescale of millions of years depend on the distribution and

transport of angular momentum with differential rotation being one of its major carriers (Mestel 1953; Zahn 2008;

Aerts et al. 2019). Consequently, a better understanding of stellar differential rotation would enable a more robust

explanation of observed stellar activity and more accurate prediction of stellar evolution.
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Figure 1. The radial differential rotation (RDR as in Eqn. [1]) and the latitudinal differential rotation (LDR as in Eqn. [2])
as proposed in Figure 1 in Kitchatinov & Rüdiger (1999). The black and red lines in both figures represent G2 and K5 stars
respectively. These power laws are used to construct the synthetic differential rotation profile Ω(r, θ) as outlined in Appendix B.
The blue star of the G2 power-law denotes the Sun.

Differential rotation in the Sun has been extensively studied over the last few decades using precise helioseismic

measurements (see Howe 2008, and references therein). The poles rotate slower than the equator with an average

surface rotation period of 27 days. A shallow fast rotating layer, in radius, lies at about 0.95R� while the radiative

interior and the core rotate approximately as a solid body. Latitudinally averaged solar rotation profile shows a jump

near the solar tachocline at 0.7R�. This leads us to believe in the presence of similar shear layers in radius for

other Sun-like stars as well. In this study, we have assumed the simplest approximation to this radial profile using a

step-function in radius (see Section 4.1). This is similar to the assumption made in Schunker et al. (2016), with the

exception that we account for latitudinal differential rotation as well.

Evolution of stellar rotation is notoriously difficult to model self-consistently (Potter et al. 2012). Kitchatinov &

Rüdiger (1999) (hereafter KR99) simulated a model for global circulation based on the mean-field hydrodynamics

of rotating turbulent fluids (Ruediger 1989). A series of differential rotation models with Prot ranging from a day

to a little over the solar rotation period were applied to the main-sequence spectral classes G2 and K5. From their

numerical results, they found that rotation follows power-laws for variation of relative differential rotation (∆Ω)/Ω as

a function of rotation rate Ω. They defined Radial Differential Rotation (RDR) which quantifies the radial variation

of the latitudinally averaged differential rotation and the Latitudinal Differential Rotation (LDR) which quantifies the
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latitudinal variation of rotation at the stellar surface:

RDR :

(
∆Ω

Ω

)
rad

=
Ω̄bot − Ω0

Ω0
, (1)

LDR :

(
∆Ω

Ω

)
lat

=
Ωequator − Ωpole

Ω0
, (2)

where, Ω̄bot and Ω0 are the latitudinally averaged angular velocity at the bottom of the convection zone and at the

surface, respectively. Ωequator is the surface angular velocity at the equator and Ωpole is the surface angular velocity

at the pole. Figure 1 shows the power-laws for RDR and LDR suggested in KR99. Observational verification of these

relations would constrain the models of KR99. As seen in Figure 1, to do so, we need (A) the surface rotation rate

Ω0 which is readily measured using multiple techniques, and (B) the asteroseismic inversions for differential rotation

(LDR and RDR) which is the focus of our study.

Asteroseismology has historically provided the most precise measurements of stellar parameters such as age, radius,

mass, density (as in the recent study by Bellinger et al. 2019) and rotation (Nielsen et al. 2017; Suto et al. 2019).

Analyzing the photometric observations of the stellar brightness reveals peaks in the frequency domain corresponding to

the eigenmodes of oscillation. These eigenmodes are labelled by n, `,m where n represents the radial order (number of

nodes along radius), ` the angular degree (total number of nodal great circles on the sphere) and the azimuthal order m

(number of zero crossings going once around the equator). Asteroseismic studies use the differences in location between

observed and expected frequency peaks of these global eigenmodes of pulsation to infer stellar internal properties. In the

presence of rotation (or any other spherically asymmetric perturbation) individual peaks corresponding to unperturbed

multiplets split into multiple peaks depending on the azimuthal order m. The width of these peaks depend on mode

damping (inversely related to the mode lifetime). If the stellar rotation is not fast enough, the mode frequencies are

not split sufficiently to resolve each widened peak separately. These widened peaks, when split, appear merged or

“broadened” rather than split. These frequency splittings can be measured using well-developed, sophisticated fitting

techniques (see Gizon et al. 2013).

Earlier studies on LDR were based on non-asteroseismic method such as (A) fourier analysis of the spectroscopic

line profiles, (B) tracking of surface magnetic features as they travel across latitudes, and (C) photometric variability

induced due to sunspots distributed across latitudes. With fabulous new photometric and spectro-polarimetric ob-

servations being available from recent and upcoming space-based missions, interior of stars beyond the Sun are now

accessible using asteroseismology. Benomar et al. (2018) reported the LDR for 13 sun-like stars based on independent

asteroseismic inversion for each star using Kepler observations. As seen in their Figure 1, the inferred error-bars are

significantly large compared to the scale necessary to constrain RDR and LDR in KR99. Consequently, with the

currently available temporal length of photometric observations, inversions using independent asteroseismic studies

performed on a single-star, lack the precision to verify the consistency of observations with the numerically predicted

power-laws in KR99. This does not rule out the viability of independent asteroseismology as and when future missions

with much longer observation times and the possibility of using doppler velocity measurements become available.

Constraining internal rotation for sub-giant stars with observable mixed-modes (p and g) is feasible using single-star

measurements (e.g. Deheuvels et al. 2012). This is much more challenging for sun-like main-sequence stars where only

p-modes are observable (Nielsen et al. 2014). Schunker et al. (2016) carried out numerical investigations demonstrating

that inversions for a “common” parameter — in their case the RDR — using a group or “ensemble” of stars yield

significantly smaller uncertainties of this parameter as compared to independent asteroseismology. This method is

called ensemble asteroseismology. They showed that the estimated errors from ensemble asteroseismology are lower

by a factor of
√
Nstars as compared to independent asteroseismology.

The Kepler mission (Borucki et al. 2010; Koch et al. 2010) provided a wealth of asteroseismic observations from

a large number of stars with observational times stretching over months to years. Chaplin et al. (2014) used data

from Kepler to infer fundamental properties of over 500 stars with solar-like oscillations. Currently, Kepler provides

the best quality of data for performing asteroseismic analysis on rotational splitting to infer stellar internal rotation.

The possibility of forming large ensembles depends on the number of stars observed and the quality of measurements

obtained from space-based missions. PLAnetary Transits and Oscillations of stars (PLATO), currently planned to

be launched in 2026, is a space-based mission being developed by the European Space Agency (ESA). It will observe

approximately 50,000 stars for extended periods of 2-3 years with the same and shorter cadence as Kepler (60 seconds)

for some of the best quality asteroseismic measurements. Therefore, we expect unprecedented observations of light
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curves from an enormous number of stars with half the noise as Kepler. This makes PLATO a promising mission for

implementing ensemble asteroseismology.

PLATO will be observing a large number of stars in the main-sequence (F, G, K). The primary target of this study is

to inspect if the accuracy of the asteroseismic ensemble inversions for differential rotation is sufficient to constrain the

power-laws of LDR and RDR as predicted in KR99. Larger number of stars in an ensemble implies smaller error-bars

(which scales as 1/
√
N stars). Small enough error-bars would enable us to test the power laws of LDR and RDR in

KR99.

1.1. The PLATO Input Catalogue

The PLATO Input Catalogue (PIC) (Montalto et al. 2021) contains 320,743 PLATO targets in the long-duration

fields. For validating the KR1999 models, the specific PLATO targets we are interested in are main-sequence F, G, K

type stars with sampling times sufficient to measure solar-like oscillations. The PLATO P1 sample of 15,094 stars has

a sampling time of 25 seconds and from the 272,617 fainter (and thus noisier) stars in the P5 sample, 9000 stars will

be observed with a sampling time of 25 seconds and at least 10% will be observed with a 50 second sampling time.

Each of the North and South long-duration fields will be observed for up to three years (Montalto et al. 2021).

The North field incorporates the Kepler field which is centred at RA 19h22m40s (J2000) and DEC 44◦30′00”. Kepler

observed stars 183-920 parsecs away (600-3000 ly) and PLATO observes stars a little closer at 146-428 parsecs away.

2. MODELLING STELLAR ROTATION

PLATO has a planned launch scheduled no earlier than 2026. In this study we carry out inversions on synthetic

frequency splitting measurements expected to be observed by PLATO. This involves (A) using previous catalogues to

estimate the expected number of stars in PIC to estimate the expected number of stars in each ensemble (see Section 3),

and, (B) generating artificial noise with the knowledge of expected ppm/hour from PLATO (see Section 2.2). As a first

step towards modeling the axisymmetric differential rotation profile Ω(r, θ), we choose to parameterize it in angular

degree s as follows.

Ω(r, θ) =
∑
s

Ωs(r)
dPs(cos θ)

d cos θ
= −

∑
s

Ωs(r)

sin θ

dPs(cos θ)

dθ
. (3)

The inversion is then carried out for the coefficients Ωs(r). It is important to note that (A) since differential rotation

Ω(r, θ) is symmetric about the equator, s is odd, and, (B) from selection rules imposed by the inversion kernel (as seen

later in Eqn. [6]) smax = 3. This is because of the triangle inequality 0 ≤ s ≤ 2` imposed by the Wigner 3-j symbol(
s ` `
0 1 −1

)
and ` = 2 being the largest reliably resolved angular degree to be used from observations.

We choose Ωs(r) to be in the form of a step-function. Unlike helioseismology where modes upto ` = 1000 can be

reliably observed, asteroseismology restricts us to ` ≤ 3. ` = 0 does not carry information about rotational splitting.

So, for each radial order n we can use only ` = 1, 2. But the number of radial orders observed is numbered in the tens

located around the multiplet (n, `) with the peak frequency ωmax. This results in the dataset for observed rotational

splitting being limited to a small number of modes. which consequently reduces the number of constraints and hence

hinders a detailed radial inversion. So, we contrain the quantity of interest — ∆Ωs. So, Ωs(r) for each angular degree

s is expressed either in terms of the parameters (Ωin
s ,Ω

out
s ) or (Ωout

s ,∆Ωs). Here, ∆Ωs = Ωin
s −Ωout

s . In our study, we

choose the latter convention. See Figure 2 for a visual representation of this simple model and the labelled associated

parameters.

We use the predicted power-law from Figure 1 in KR99 to construct the synthetic differential rotation profile.

Figure 1 shows the LDR(Prot) and RDR(Prot) as suggested in KR99. This gives us the parameters Prot,
∆Ω
Ω

∣∣∣∣
rad

and

∆Ω
Ω

∣∣∣∣
lat

. Appendix B details how these parameters are used to generate the model parameters Ωout
1 ,∆Ω1 and Ωout

3 .

These are used to generate Ωs(r) which is then used in obtaining the synthetic frequency splittings δωnlm according

to Eqn. (5). This gives us a noise-free estimate of the δωnlm measurements to be used in inversions.

2.1. Frequency splitting due to differential rotation

Flow due to differential rotation vrot(r, θ) = r × Ω(r, θ) is an axisymmetric (zonal) toroidal flow. A common way

(see Ritzwoller & Lavely 1991; Schou et al. 1998; Vorontsov 2011) to parameterize differential rotation Ω(r, θ) is to
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Figure 2. Representative plot showing the step function used in functional fitting of Ωs(r) as detailed in Section 4.1, more
specifically Eqn. (11). An averaged internal rotation (for r ≤ rcz) and an averaged external rotation (for r > rcz) is denoted
by Ωin

s and Ωout
s , respectively. The jump in rotation rate is defined by ∆Ωs = (Ωin

s − Ωout
s ). So, the radial variation of Ωs(r)

can be parameterized either as (Ωin
s ,Ω

out
s ) or as (Ωout

s ,∆Ωs). In this study we choose the latter set of parameters. For this
representative plot, rcz is denotes the base of the solar convection zone at 0.7R�.

decompose it in the basis of legendre polynomials Ps as in Eqn. (3). Using these basis coefficients Ωs(r), we can

similarly parameterize vrot(r, θ) as

vrot(θ, φ) = −
∑
s

rΩs(r)

(
4π

2s+ 1

)1/2

∂θYs0(θ, φ) êφ (4)

where, Yst are spherical harmonics (following the convention in Edmonds 1960), êφ is the unit vector along the φ

axis and s is the angular degree of differential rotation. Note that the azimuthal order is zero for axisymmetric

perturbations. From linear perturbation theory, it can be shown that the eigenfrequencies of the background stellar

model due to an axisymmetric flow perturbation of the form δL = −2iρ0vrot ·∇ induces frequency shifts (or splittings)

δωn`m =
∑

s=1,3,...

∫ R∗

r=0

Ωs(r)Ksnlm(r) dr, (5)

where the sensitivity kernel Ksnlm(r) for Ωs(r) can be expressed as (see Appendix A in Vorontsov 2011),

Ksn`m(r) = (−1)m+1` (`+ 1) (2`+ 1)

(
s ` `
0 1 −1

) (
s ` `
0 m −m

)
ρ0 r

2

×
[
U2 − 2U V +

(
`(`+ 1)− 1

2
s(s+ 1)

)
V 2

]
. (6)

Here, r is the grid along radius, U = Unlm(r), V = Vnlm(r) are the radial and the horizontal eigenfunctions, ρ0 is the

density profile of the stellar model obtain from MESA. It must be noted that the Wigner 3-j symbols impose selection
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Figure 3. 2D quadrants of the Sun and three hypothetical stars (Star A, Star B and Star C) when modeled in (r, θ) as
an axisymmetric flow which is a step-function in r (as in Figure 2) with maximum angular degree smax = 3. The top-left
panel shows differential rotation in the Sun Ω�(r, θ) as found in the 1.5D inversion in Schou et al. (1998) — plotted here after
approximating Ωs(r) as a step-function in radius. The remaining three panels show the “point-wise” relative differential rotation
Ω∗(r, θ)/Ω�(r, θ). We choose the average surface rotation periods (in days) PA

rot = 5, PB
rot = 15 and PC

rot = 25. This is the same
as the average of the windows W1, W2 and W3 plotted on the x-axis in Figure 5.

rules that allow non-vanishing values for Ksnlm for odd s. This implies that given the observed frequency splitting

values δωnlm, Eqn. (5) allows inverting for only equatorially symmetric Ω(r, θ).

2.2. Modelling uncertainties on the splittings

The uncertainty in inverted parameters depend critically on the uncertainty in measurements. Therefore, to generate

realistic synthetic observations, we need a noise model to account for the observational errors and to develop a robust

algorithm for inversions. We use the noise model from Libbrecht (1992) for the uncertainty in the observed frequency

splitting σ(δωnlm),

σ(ωn`m) = f(β)
Γn`m
4πT

. (7)

Here, Γnlm is the mode linewidth and T is the total temporal length of observation. f(β) = (1 +

β)1/2
[
(1 + β)1/2 + β1/2

]3
and β = Bnlm/Hnlm where, Bnlm is the background noise at ωnlm and Hnlm is the mode
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Figure 4. Variation of uncertainty in frequency splitting σ(δωnlm) as a function of mode frequency ωnlm. The black and red
lines denote different radial orders n for angular degrees ` = 1 and ` = 2 respectively. Solar values are used for the linewidth
Γnlm, central frequency of envelope ω0, envelope widths σ1 and σ2 . These values can be found in Stahn (2010).

height in the frequency power spectrum. Details of constructing the synthetic Bnlm using the Harvey model (Harvey

1985) can be found in Stahn (2010). The mode height of a mode with frequency ωnlm is given by

Hnlm=
A2
`

πΓnlm
F (ωnlm, ω0, σ1, σ2) (8)

where, F (ω, ω0, σ1, σ2) =


[
1 +

(
ω−ω0

2πσ1

)2
]−2

ω ≤ ω0[
1 +

(
ω−ω0

2πσ2

)2
]−2

ω > ω0

(9)

where, A` is the maximum of the envelope of modes with angular degree `, F (ωnlm, ω0, σ1, σ2) given by Eqn. (9) is

the envelope function centered at frequency ω0 with σ1 and σ2 being the widths of the envelope below and above ω0.

We scale the parameters from solar values determined by Stahn (2010) using the following scaling laws (see Chaplin

et al. 2009; Schunker et al. 2016):

Γnlm,∗
Γnlm,�

=
T 4

eff,∗

T 4
eff,�

,
Hnlm,∗

Hnlm,�
=
g2
�
g2
∗
,

Bnlm,∗
Bnlm,�

=
νmax,∗

νmax,�
, (10)

where, subscripts � and ∗ refer to Sun and other stars respectively.

As in Schunker et al. (2016), we construct the uncertainty in frequency splittings σ(δωnlm) using σ(δωnlm) =

σ(ωnlm)/m. Figure 4 shows the variation of σ(δωnlm) as a function of mode frequency ωnlm for the Sun.

We use Kepler observations as a quantitative measure of the noise (in ppm/hour) to be used to generate synthetic

frequency splitting data. The stars in the P1 sample will be measured at a noise level of 50 ppm/hour which is half

of the noise level in Kepler measurements. The P5 sample of at least 36,271 fainter stars will have a Kepler-like noise

level of 100 ppm/hour.
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3. DEFINING STELLAR ENSEMBLES

The goal of this study is to estimate uncertainties associated to radial differential rotation (RDR) and latitudinal

differential rotation (LDR) via ensemble asteroseismology using PLATO. The uncertainties scale as 1/
√
N∗ where N∗

is the number of stars in an ensemble. Therefore, we need to have an estimate of the number of stars we should expect

in each PLATO ensemble.

McQuillan et al. (2014) measured the rotation periods of 34,030 (25.6%) of the 133,030 main-sequence Kepler targets.

Hotter stars tend to be faster rotators, and faster rotators are easier to measure rotation periods for. Therefore, of the

34,030 detected rotation periods there are about

• 52% with 0 < Prot < 10: Equivalent to 22085 stars in PLATO. We label this window of time-period as W1.

• 30% with 10 < Prot < 20: Equivalent to 12894 stars in PLATO. We label this window of time-period as W2.

• 12% with 20 < Prot < 30: Equivalent to 5132 stars in PLATO. We label this window of time-period as W3.

• 6% with Prot > 30: Equivalent to 2344 stars in PLATO.

4. INVERSE PROBLEM: THEORY AND NOTATIONS

4.1. Functional Fitting

In this section, we discuss the details of the “functional fitting” method deriving inspiration from Section 3.3 in

Schunker et al. (2016); Kawaler et al. (1999) (hereafter K99). Frequency splittings in a star can be reliably observed

upto an angular degree ` ≤ 3 (although, in this study we consider an upper limit of ` ≤ 2) for a few tens of radial

orders n. Such limited information (as compared to helioseismology), compels us to assume simple functional forms

for Ωs(r). In this paper, we choose to project Ωs(r) onto a step function. We choose functional fitting over the more

traditional Regularized Least Square (RLS) method since K99 show (Section 4 therein) that if the actual rotation rate

does not conform to the regularization, RLS inversions “yield markedly unrealistic results”. In the next subsections,

we assume a discretized radial grid rj where j ∈ [0,M ] such that r0 = 0 and rM = R∗. A function in r = rj can be

expressed as a sum over basis polynomials Fk(rj) which are appropriated weighted ak,

Ωs(rj) = Ωsj = ask Fk(rj) = Fjk a
s
k , (11)

where we have used Einstein’s summation convention over repeated indices (used in the rest of the paper unless

mentioned otherwise).

4.1.1. 1D inversion: Radial profile only

This is the simplest case and is just meant to be a rephrasing of K99 in terms of our problem parameters. The

frequency splittings can be expressed as

δωn`m =

∫ R∗

r=0

Ω(r)Knlm(r) dr, (12)

Adhering to the same convention as in K99, we shall denote the multiplet (n, `,m) using the label i where i ∈ [1, N ].

So, Eqn. (12) can be written in the ‘concise index form’ δωi = Kij Ωj . Since in our problem, the observable modes are

far smaller than the ideal grid in radius we would want, we restrict ourselves to a pre-chosen functional form. This, in

our case, is the following step-function in radius:

Ω(r) =

Ωout
1 + ∆Ω1 r < rcz

Ωout
1 r ≥ rcz

(13)

For the step-function in Eqn. (13), this would imply

Ωj = (Ωout
1 + ∆Ω1)Fj1 + Ωout

1 Fj2 , (14)

where Fj1 = H(rj − rcz) and Fj2 = H(rcz− rj) and H(x) is the heaviside step function. So, comparing Eqn. (14) with

Eqn. (11), we see that a1 = Ωout
1 + ∆Ω1 and a2 = Ωout

1 . Now, the above basis functions are true if we want to invert



Stellar interior differential rotation with PLATO 9

for Ωin
1 and Ωout

1 . However, for our problem, we shall be inferring Ωout
1 and ∆Ω1. We arrive at a convenient choice for

our basis functions as follows after some trivial algebra.

Ωj = (Ωout
1 + ∆Ω1)H(rj − rcz) + Ωout

1 H(rcz − rj) = Ωout
1 [H(rj − rcz) +H(rcz − rj)] + ∆Ω1H(rj − rcz)

= Ωout
1 + ∆Ω1H(rj − rcz) .

(15)

So, comparing with Eqn. (11), we see if we choose a1 = Ωout
1 and a2 = ∆Ω1 then Fj1 = 1 and Fj2 = H(rj − rcz).

The final target is to extract ak using the data δωi, the analytical closed-form expressions of the kernels Kij and basis

functions Fjk. In 1D (where s = 1), using Eqn. (12) in its concise index form along with Eqn. (11), we get

δωi=Kij Ωj (16)

=Kij Fjk ak = Bik ak (17)

where we have written Bik = Kij Fjk. Now, if the uncertainties in measurements of δωi are σi, let us define δω̃i = δωi/σi
and Aik = Bik/σi (note, no summation over repeated indices used here). Eqn. (17) can then be written as δω̃i = Aik ak.

The elements of the data vector is populated with the frequency splittings, di = δω̃i. Writing this in matrix form we

get, d = A · a. Assuming A is not necessarily a square matrix, we can solve for a by taking a generalized inverse.

a = (AT · A)−1 AT · d (18)

In the following subsections we have additional features that: (A) allow s = 1, 3 (2D inversions), and, (B) impose

surface rotation constraints (constrained inversions). It may be important to note that the equations for these inverse

problems will have the same mathematical form as Eqn. (18) with modifications to the expressions of A matrix and d
vector.

4.1.2. Adding a regularization term in 1D

For noise-free data δωi, Eqn. (16) can be derived from the minimization of the loss function χ2 expressed as

χ2 =
∑
i

(δωi −Kij Ωj)
2

(19)

with respect to the model parameter Ωj . However, the forward model is expected to change if we add a regularization

term to the minimization function. For our problem, we shall be using surface rotation Ωoutobs as constraints. Including

uncertainty in frequency splitting measurements σ(δωi) = σi and surface rotation constraint Ωoutobs changes the loss

function as below.

χ2 =
∑
i

(
δωi −Kij Ωj

σi

)2

+ µ
(
Ωout − Ωout,obs

)2
,

χ2 =
∑
i

(
δω̃i − K̃ij Ωj

)2

+ µ
(
Ωout − Ωout,obs

)2
,

(20)

where the δω̃i = δωi/σi and K̃ij = Kij/σi. Any observational uncertainty in Ωout,obs is absorbed into the regularizing

parameter µ. Now, if there are M radial grid points, then Ωout = ΩM (although in our case M = 2 effectively). So,

minimizing w.r.t Ωk gives us

∂χ2

∂Ωk
=
(
δω̃i − K̃ij Ωj

)(
−K̃ik

)
+ µ

(
ΩM − Ωout,obs

)
δMk = 0 (21)

After a few lines of algebra, this can be re-expressed as(
K̃ik K̃ij + µ δMk δMj

)
Ωj = δω̃i K̃ik + µΩout,obs δMk (22)

Next, we use the functional fitting for Ωj = Fjk′ ak′ and get

Areg · a = dreg

where, (Areg)kk′ =
(
K̃ik K̃ij + µ δMk δMj

)
Fjk′

and, (dreg)k =
(
δω̃i K̃ik + µΩout,obs δMk

) (23)
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Finally, as mentioned before, this has the same form as Eqn. (18) with modified matrices due to regularization

a = (ATreg · Areg)−1 ATreg · dreg (24)

4.1.3. 2D inversions: Slight modification to the 1D case

If we want to invert for the solid body component along θ given by s = 1 as well as the first equatorially symmetric

harmonic degree given by s = 3. The corresponding radially discretized expression for frequency splitting δωnlm and

functional fitting Ωs(r) using condensed labels is given by

δωi = Ωsj Ksij ,

Ωsj = Fjk a
s
k .

(25)

Note that the basis polynomials Fjk do not inherit the angular degree s since we assume that the discontinuity exists

at the same location in radius r = rcz for both Ω1
j and Ω3

j . The coefficients ask are

a1
1 = Ωout a1

2 = ∆Ω1

a3
1 = 0 a3

2 = ∆Ω3
(26)

To maintain the form of Eqn. (17), the definitions of Bik and ak would be slightly altered. Since ak is a vector

of unknown parameters, we shall append the extra elements of a3
k under the elements of a1

k. This would imply an

extension in the number of columns of Bik such that the B1
ik would form the first set of columns and B3

ik constitutes

the second set of columns.


...

δωi
...

 =


. . .

...
. . .

...

· · · B1
ik · · · · · · B3

ik · · ·
...

. . .
...

. . .





...

a1
k
...

a3
k
...


(27)

The remaining steps stay the same with this modified form of B and a matrices. The inverse problem with appropriately

modified expressions for A and a has the same form as Eqn. (18).

4.1.4. Regularization in 2D with surface “average” rotation constraint

In this section we shall derive the statement for the inverse problem for 2D inversions with constraint on the

“average” observed surface rotation profile (see Eqn. [B3] for the averaging convention used). As shown Eqn. (B13)

in Appendix B, this average observed surface rotation rate Ωout,obs = Ωout
1 . Using Eqn. (11), the loss function can be

written as

χ2 =
∑
i

(
δωi −Bsij asj

σi

)2

+ µ

(
Ωout

1 − Ωout,obs

∆Ωout,obs

)2

(28)

Note that here, Bsij = Ksik Fjk. Also, as before, we define δωi/σi = σ̃i, B
s
ij/σi = Asij and µ/∆Ωoutobs = µ̃. This gives

us

χ2 =
∑
i

(
δω̃i −Asij asj

)2
+ µ̃

(
Ωout

1 − Ωout,obs
)2

(29)

Minimizing with respect to the rotation profile as
′

p ,

∂χ2

∂as′p
= (δω̃i −Asijasj)(−As

′

ip) + µ̃(Ωout
1 − Ωout,obs)

(
∂Ωout

1

∂as′p

)
(30)

Now, since Ωout
1 = a1

2, so
(
∂Ωout

1 /∂as
′

p

)
= δs

′,1 δp,2. So, Eqn. (3) becomes

∂χ2

∂Ωs′p
= (δω̃i −Asijasj)(−As

′

ip) + µ̃(asj δ
s,1 δj,2 − Ωout,obs) δs

′,1 δp,2 = 0 (31)
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Figure 5. RDR for G2 stars scaled by a factor of 2 (left panel) and 5 (right panel) compared to Figure 1 in Kitchatinov &
Rüdiger (1999) superposed with predicted error-bars from ensemble asteroseismology using “expected” PLATO measurements.
The color-coded legend shows the number of stars considered in each ensemble. Ensembles are defined using frequency windows
W1, W2 and W3 as defined in Section 3. The common ensemble parameter ∆Ω is inverted for each window (W1, W2, W3) and
plotted against the average Prot of the respective window (5 days, 15 days, 25 days). The black star symbol denotes the Sun on
this plot.

After a few lines of calculation we get(
As
′

ipA
s
ij a

s
j + µ̃ δs

′,1 δp,2 δ
s,1 δj,2 a

s
j

)
= δω̃iA

s′

ip + µ̃Ωout,obs δs,1 δp,2 (32)

In our code, we combine the Nparams dimension with the s dimension, let us define a combined dimension for (p×s′) = α

and (j×s) = β. This essentially represents “flattening” the dimensions j and s to make it a single enhanced dimension

of length p× s. This makes the previous equation look like

(AiαAiβ + µ̃ Jα Jβ) aβ = δω̃iAiα + µ̃Ωout,obs Jα (33)

where Jα = δs
′,1 δp,2 and Jβ = δs,1 δj,2 with the dimensions flattened adequately. So, we regain the usual notation

A2D
reg · a = d2D

reg , (34)

where, (
A2D

reg

)
αβ

= AiαAiβ + µ̃ Jα Jβ(
d2D

reg

)
α

= δω̃iAiα + µ̃Ωout,obs Jα .
(35)

Again, the inverse problem Eqn. (34) for the constrained 2D case has the same form as Eqn. (18) with modified

expressions for A and d.

5. CONSTRAINING RADIAL DIFFERENTIAL ROTATION AS A FUNCTION OF ROTATION

In this section, we present the results of estimating the error-bars from the frequency splitting measurements expected

to be measured by PLATO. As detailed in Sections 2 and Appendix B, we construct the synthetic rotation profile for

stars across rotation period Prot ∈ [1, 30] using the power law given in KR99. To emulate the noise expected from

PLATO measurements, we use the treatment outlined in Section 2.2. Next, we form ensembles based on windows in

rotation period W1-W3 as defined in Section 3. Ensemble asteroseismology is based on forming groups with common

parameters shared by stars in that ensemble. From Figure 1 we notice that the RDR increases monotonically across

Prot in log-scale. Multiplying RDR by Ω (which decreases monotonically for increasing Prot), we find that ∆Ω remains

nearly constant. This allows us to consider ∆Ω as an ensemble parameter based on windows W1: Prot ∈ [1, 10] days,
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W2: Prot ∈ [10, 20] days and W3: Prot ∈ [20, 30] days. Again, as mentioned in Section 3, the number of stars considered

in each window is inspired from cross-matching PIC with the stars in McQuillan et al. (2014) derived from the Kepler

catalogue.

The RDR power-law suggested by KR99 is obtained from simulations which considers only the outer convection

zone and not the radiative interior. This could lead to possible underestimation of ∆Ω. In Figure 5, we present

the estimated error-bars after scaling the RDR suggested in KR99 by a factor of 2 and 5. Since the y-axes are in

logarithmic scale, the size of error bars drop significantly upon such scaling. As a result, we see that the case where

∆Ω is scaled by 5 is very tightly constrained. However, even if we scale up by a factor of 2, we find that the error bars

for W1 and W2 are small enough to verify the power law. The inversions are carried out using Eqn. (18) implemented

in enseisro (can be found in the link here).

6. DISCUSSION AND CONCLUSION

In the course of the KSPA summer program spanning six weeks, we designed the software to carry out 1D and 2D

unconstrained inversions for stars using ensembles with common ∆Ω among the stars. The primary goal of this study

is to estimate error-bars of
(

∆Ω
Ω

)
rad

using synthetically generated expected PLATO data. From the results discussed

in Section 5, we find that if KR99 had underestimated ∆Ω by a factor of 2 or more, then the expected error-bars are

sufficiently small to gauge the accuracy of their interface dynamo theory.

The immediate next steps in this study are listed below.

1. Impose surface rotation constrain based on previous independent studies using Kepler data (such as McQuillan

et al. 2014). This involves modifying the expressions in the inverse problem as in Eqn. (23)-(24) and Eqn. (34)-

(35).

2. Estimating error-bars for the LDR similar to that done for RDR in Figure 5. It is expected that the error bars

for the LDR would be much smaller because of the significantly larger value of LDR as compared to RDR plotted

in log-scale.

3. All the results presented until now was for G2 type stars. We plan to use MESA-GYRE to generate the stellar

models for K5 type stars and subsequently their eigenfunctions and eigenfrequencies. This would allow us to

generate error-bars for the K5 power-law.

The authors thank the Kavli Foundation for organizing the Kavli Summer Program In Astrophysics 2021 which

facilitated this collaborative project. The authors are grateful to Dr Robert Cameron of Max Plank Institute for Solar

System Research (MPS) for insightful discussions during the course of the summer program.

APPENDIX

A. TESTING THE ASYMPTOTIC APPROXIMATION

A common approximation when inferring stellar internal profiles from frequency splitting measurements is to use

the semiclassical approximation for Wigner 3-j symbols (Brussaard & Tolhoek 1957; Dahlen & Tromp 1998). We see

from Eqn. (6), that these Wigner 3-j symbols appear in the exact expressions for rotation kernels (as well as kernels

for any other perturbation). For modes with high ` such that s << `, a Wigner 3-j symbol can be approximated by

associated Legendre polynomials as

Approximation 1 :

(
s ` `
0 m −m

)
' (−1)`+m

(2`)1/2
P 0
s

(m
`

)
, (A1)

and the product of Wigner 3-j symbols as in Eqn. (6) is approximated under similar asymptotic limit as

Approximation 2 :

(
s ` `
0 1 −1

)(
s ` `
0 m −m

)
' (−1)

s−`′+`+2m+1
2

(s+ `′ − `)!!(s− `′ + `)!!

2`2(s+ `′ − `)!
P `
′−`
s

(m
`

)
. (A2)

It is to be noted that the above asymptotic limit holds for odd s only. We tested the goodness of this approximation

with s = 3, which is the largest angular degree of differential rotation we are currently interested in this study.

https://srijaniiserprinceton.github.io/enseisro/index.html
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Figure 6. Percentage error in semi-classical asymptotic approximation of the Wigner 3-j symbols. The black line shows the
error in percent when using the Approximation 1 as given by Eqn. (A1) and the red line shows the error in percent when using
Approximation 2 as given by Eqn. (A2). It is to be noted that other studies in asteroseismology often use the Approximation 2
in the rotation kernel given by Eqn (6).

Varying the angular degree of the mode over wide range ` ∈ [1, 500], demonstrates that for ` . 14 the error in such

approximations exceed 10%. Figure 6 shows the percentage error in approximations given by Eqn. (A1) in black and

Eqn. (A2) in red. In this study and the software developed enseisro, we strictly stick to the exact expressions using

Wigner 3-j symbols.

B. GENERATING SYNTHETIC ROTATIONAL PROFILES FROM KR99

In this section, we would like to artificially generate rotational profiles (for Sun-like stars) which follow the trend

found in Figure 1 of KR99. In particular, we are looking for a relation between the expressions in KR99 and those in

our parameterization as in Sections 4.1.1, 4.1.2, 4.1.3 and 4.1.4.

First, we present some definitions seen in KR99. Ω0 is the latitudinally averaged rotation rate of the surface, namely,

Ω0 =
3

4

∫ π

0

Ω(R, θ) sin3θ dθ, (B3)

where the weighting sin3θ is included so that Ω0 is unchanged even if the angular momentum is latitudinally re-

distributed (see the text in KR99). The stellar radius is given as R. Ω0 = 2π/Prot, where Prot is the rotational

period.
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Following the same latitudinal averaging as Eqn. (B3) at the base of the convection zone, Ω̄bot is defined as below

Ω̄bot =
3

4

∫ π

0

Ω(rcz, θ) sin3θ dθ, (B4)

where rcz is the radial location of the base of the convection zone.

KR99 defines two important parameters that describe the differential rotation of the star. One is the surface

latitudinal differential rotation (LDR),
∆Ω

Ω0
≡ Ωequator − Ωpole

Ω0
, (B5)

and the other is the latitudinally averaged rotation inhomogeneity with depth (the radial differential rotation, or

RDR),
∆Ω

Ω0

∣∣∣∣
rad

≡ Ω̄bot − Ω0

Ω0
. (B6)

In Figure 1 of KR1999, the horizontal axis is Prot, and the vertical axes are ∆Ω
Ω0

and ∆Ω
Ω0

∣∣∣∣
rad

for the left and right

panels in Figure 1, respectively. The starting point is our way of parameterization of the internal rotation,

Ω(r, θ) =
∑
s

Ωs(r)
dPs(cos θ)

dcos θ
. (B7)

Since we are considering the case with s = 1, 3, we can express Ω(r, θ) more explicitly as below:

Ω(r, θ) = Ω1(r) + Ω3(r)

(
15

2
cos2θ − 3

2

)
, (B8)

where the Legendre polynomials with degrees one and three have been substituted. By assuming step-like functions

for Ω1(r) and Ω3(r), we have the following expression:

Ω(r, θ) = Ωin
1 Fin + Ωout

1 Fout + Ωout
3 Fout

(
15

2
cos2θ − 3

2

)
, (B9)

where, step-like functions for the radiative region and the convective envelope are expressed by Fin and Fout, respec-

tively. Note that Ωin
1 , Ωout

1 , and Ωout
3 are constants here. We also assume that the radiative region is not latitudinally

differentially rotating, i.e. Ωin
3 = 0.

The rest of the Appendix details the process of generating artificial rotational profiles from Figure 1 in KR99 which

we intend to test when using real observations from PLATO. This involves expressing Ω1
out,Ω

3
out and Ω1

in in terms of

Ω̄bot, (Ωequator − Ωpole) and Ω0 (which parameters in KR99 as described below). The first thing to do is to select the

rotation period Prot. Then, based on Figure 1 in KR99, we can determine the LDR ∆Ω
Ω0

from the left panel and the

RDR ∆Ω
Ω0

∣∣∣∣
rad

from the right panel at that Prot. Because the rotation period is simply related to Ω0 as Ω0 = 2π/Prot,

we can then obtain (Ωequator − Ωpole) and Ω̄bot.

The definition of Ω̄bot in Eqn. (B4) along with the parameterization of Ω(r, θ) in Eqn. (B9) leads to the following

equation:

Ω̄bot =
3

4

∫ π

0

Ωin
1 sin3 θ dθ, (B10)

where we have assumed that the rotation rate at the base of the convective envelope is represented by Ωin
1 . Note that

we assume Fin = 1 and Fout = 0 at r = rcz (assuming otherwise would mean Fin = 0 and Fout = 1 at r = rcz in which

case, the radial differential rotation would be zero). Evaluating the simple integral in Eqn. (B10) we find that

Ω̄bot = Ωin
1 , (B11)

as
∫

sin3θdθ = 4/3. Further, we note that Ωequator = Ω(R, π/2) and that Ωpole = Ω(R, 0). Substituting these in

Eqn. (B9) we get

Ωequator − Ωpole = −15

2
Ωout

3 . (B12)
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Furthermore, by substituting the definition of Ω0 from Eqn. (B3) in the parameterized form in Eqn. (B9) and subse-

quently computing the integration, we find that

Ω0 = Ωout
1 . (B13)

Therefore, what we have is a one-to-one relation between the parameters in KR99 and those in our parameterization.
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