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ABSTRACT
Large pristine samples of red clump stars are highly sought after given their ability to
give precise distances even at large distances. However, it is difficult to cleanly select
red clumps stars because they can have the same Teff and log g as red giant branch
stars which are not standard candles. Recently, it was shown that the asteroseismic
parameters ∆P and ∆ν which are used to accurately select red clump stars can be
derived from spectra. In this study, we use a mixed density network to derive the
∆P,∆ν, Teffand log gfrom photometry in order to select a clean sample of red clump
stars. We combine data from 2MASS, AllWISE, Gaia, and Pan-STARRS to create
a 13-band SED along with parallax information. We achieve a contamination rate of
∼25%. We then use this catalog to make a precise map of the distant Galaxy. In the
process of creating the red clump catalog we also create a giant stars catalog, which
will both be available to the public.
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1 INTRODUCTION

Distances are one of the most important and yet hardest
measurements to make in astronomy. The Gaia Mission aims
to provide parallax measurements for billions of stars in or-
der to produce a map of the Galaxy (Gaia Collaboration
et al. 2016). However, the Gaia mission will be plagued with
large errors in the distance Galaxy as the error on distance
derived from parallax goes as distance squared. Standard
candles, such as red clump (RC) stars, where the distance
is derived using the distance modulus have errors that are
linear with distance. For example, with high precision pho-
tometry, RC stars can provide distances with errors ∼ 6% at
distances up to ∼ 10 kpc (Bovy et al. 2014; Hawkins et al.
2017). Therefore, standard candles can provide more precise
distances for objects in the distant Galaxy than parallaxes
and are an excellent complement to the Gaia catalog.

RC stars have been used as standard candles since the
late nineties (Stanek et al. 1997, 1998). RC stars are burning
helium in their core and also have a hydrogen burning shell.
These two components are thought to balance so that the
luminosity of the star has very weak dependence on mass
and metallicity (Castellani et al. 1992). However, selecting
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a pristine sample of red clump stars can be difficult. Red
giant branch (RGB) stars have inert Helium cores with a
hydrogen burning shell but can have the same Teff and log
g as RC stars.

Asteroseismology has proven to be the most accurate
method for selecting red clump stars (Bedding et al. 2011;
Mosser et al. 2011; Stello et al. 2013; Mosser et al. 2014). The
average large frequency spacing (∆ν) goes as the square root
of the mean stellar density (Chaplin & Miglio 2013). It has
been shown that the distribution of ∆ν values for RGB and
RC stars are distinct (Miglio et al. 2009; Mosser et al. 2010).
RC stars are more constrained in this space with ∆ν < 5
µHz. While, RGB stars can have ∆ν > 20 µHz. Red giant
stars have been shown to have coupling between the gravity
waves in the dense radiative core and the acoustic waves in
the envelope (Beck et al. 2011). RC and RGB clearly sepa-
rate in the period spacing (∆P) of these mixed modes with
RC stars typically having ∆P > 200s and RGB stars having
∆P <100s (Bedding et al. 2011; Mosser et al. 2011; Stello
et al. 2013; Mosser et al. 2014). However, ∆P is a difficult
measurement and has only been measured for a fraction of
the Kepler and CoRoT samples (Girardi 2016).

Recently, Hawkins et al. (2018) showed the ∆P and the
∆ν spacing can be inferred from a stellar spectrum. It has
long been thought that the carbon to nitrogen ratio, [C/N],
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would be different in RC stars relative to RGB stars be-
cause of mixing that occurs along the upper RGB phase
(Martell et al. 2008; Masseron & Gilmore 2015; Masseron
& Hawkins 2017; Masseron et al. 2017). Using The Can-
non (Ness et al. 2015; Casey et al. 2016), Hawkins et al.
(2018) showed the carbon and nitrogen bands in spectra
from the Apache Point Observatory Galactic Evolution Ex-
periment (APOGEE) (Majewski et al. 2015) survey can be
used to infer the ∆P and ∆ν and therefore, used to select RC
stars. Building off of this work, Ting et al. (2018) presents
a catalog of ∼ 100,000 RC stars from the APOGEE and
LAMOST catalogs (Xiang et al. 2017). However, > 70% of
that sample is within 3 kpc of the Sun where Gaia gives
more precise distances (Ting et al. 2018). This represents
the largest constraint to recent spectroscopic surveys. Spec-
tra require more flux than photometry and therefore high
signal-to-noise (S/N) data can only be achieved nearby.

In this work we aim to make use of the vast amount of
available photometry to obtain the largest and most distant
sample of red clump stars yet. It is reasonable to assume that
if the information to accurately select red clump stars is in
the spectra, then the same information is the the spectral
energy distribution (SED) just with a much weaker signal.
In Section 2 we describe the photometry selection we use
to create the SED. In Section 3, we describe the innovative
method we develop to infer the Teff , log g, ∆P and ∆νfrom
the SEDs and how we use those parameters to select a sam-
ple of RC stars. Finally, in Section 4 we present a map of
the Milky Way made with our selection of red clump stars
and discuss the results.

2 DATA

2.1 Photometry

In this work we make use of data from Gaia DR2 (Gaia
Collaboration et al. 2018), Pan-STARRS1 (Chambers et al.
2016), 2MASS (Skrutskie et al. 2006) and AllWISE (Wright
et al. 2010; Mainzer et al. 2011) photometric catalogs, along
with Gaia DR2 parallaxes. We include all the pass bands
from Gaia (G, BP, RP), Pan-STARRS (g,r,i,z,y) and 2MASS
(J, H, KS). We use only the two bluest AllWISE bands, W1
and W2. The two other bands, W3 and W4, are shallower,
have lower spatial resolution and do not contain much ad-
ditional information about the SED of red clump stars. We
also make use of the provided Gaia DR2 crossmatches with
Pan-STARRS1, 2MASS, and AllWISE which take into ac-
count the motions of the targets and the varying epochs of
the different surveys (Marrese et al. 2019).

We perform multiple quality cuts to ensure we only use
accurate photometry and parallaxes. As recommended by
Arenou et al. (2018) and Evans et al. (2018) to ensure quality
Gaia DR2 photometry we applying the following cut:

1.0+0.015(BP− RP)2 <phot bp rp excess factor< 1.3
+ 0.060(BP− RP)2

We also apply a quality cut using the renormalised unit
weight error (ruwe<1.4) to ensure quality parallax mea-
surements. Last, we only use “A” quality photometry from
2MASS and AllWISE.

2.2 Training and Testing Data

In order to train the network and evaluate our method we
require a set of data with known asteroseismic parameters.
We use the catalog presented in Ting et al. (2018) which
provides ∆P and ∆ν measurements for LAMOST DR3 (Xi-
ang et al. 2017) spectra within a convex hull of red clump
Teff and log g values (see Figure 4). This catalog is derived
using a data-driven neural network which finds a mapping
between the pixel values of the spectra to ∆P and ∆ν. For
our training we include only high quality ∆P and ∆ν mea-
surements from this catalog, requiring the spectra to have
S/Npix >75. With this quality cut, the training sample has
a contamination rate of ∼3%. We train our ∆P and ∆ν
network on a subset of 30,000 stars from this sample. We
include data with S/Npix <75 in our testing set of 100,000
of stars to determine the accuracy of our inference on lower
S/N data.

In addition to this training set we require another train-
ing set to determine photometric Teff and log g outside of
the convex hull. For this, we use the LAMOST DR3 stellar
catalog. Here, we require the training set of 200,000 to have
g-band S/N >50. Again, out testing set of 900,000 stars does
not have a S/N cut.

With both training sets we perform a sky crossmatch
with Gaia DR2 using TOPCAT (Taylor 2005). We then use
the provided Gaia DR2 crossmatches to obtain the photom-
etry from AllWISE, 2MASS, and Pan-STARRS1.

3 METHOD

3.1 Mixed Density Network

In this work, we infer the ∆P, Teff , and log g of stars from 13
photometric bands and Gaia DR2 parallaxes using a Mixture
Density Network (MDN; Bishop 1994). A MDN is a neural
network where the outputs parametrize a Gaussian mixture
model:

p(θ|x) = Σn
j=1ωjN (µj , σj) (1)

Thus the outputs give a probability distribution function
(PDF) and we use the negative log likelihood as our loss
function. In other words, we train our network to maximize
the sum of the log likelihoods of the output PDFs given the
data. In this work, each of the MDNs we use have the same
architecture. We use three fully connected layers with 32,
16 and 8 nodes. We apply a rectified linear function to each
node as an activation function which makes the mapping
from inputs to outputs highly non-linear.

3.2 Selecting Giant Stars

We first infer the log g and Teff of all of the stars in our sam-
ple in order to select the giant stars. To do this, we train
two MDNs using a random sample of 200,000 stars from
the LAMOST DR3 catalog which pass our quality cuts (see
Section 2.2). Both of these networks have one mixture com-
ponent as the output so the inferred value is the mean of the
Gaussian and the error is the width. We show a comparison
of our derived values with the LAMOST results for 900,000
test stars in Figure 1. On average, our photometric Teff val-
ues are lsmaller by 20 K with a standard deviation of 194 K.
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Figure 1. The stellar parameters (Teff and log g) we derive from

the photometry compared to the spectroscopically derived values
from LAMOST. The mean difference between the Teff is 20 K

with a standard deviation of 194 K. The mean error in Teff is 185

K with a standard deviation 444 K. The mean difference between
the log g is .03 dex with a standard deviation of .27 dex. The

mean log g error is 0.15 dex with a standard deviation of .07 dex.
There is a group of stars that have spectroscopically derived log

g <3.5 dex, and our derived values are > 3.5 dex. These stars

generally have parallax errors > 0.05 mas. We only use these
derived parameters to select giant stars and do not report them.

These results are sufficient to select giant stars, however we are

biased against stars with parallax errors > 0.05 mas.
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Figure 2. On the left is the LAMOST Kiel diagram for the test-

ing sample and on the right is the photometric Kiel diagram. It
is clear that the main sequence and giant branch are preserved in

the photometric diagram. Therefore we can confidently select gi-

ant stars using these parameters. The red box in the photometric
Kiel diagram (right) shows our selection.

The mean error on Teff is 185 K with a standard deviation of
444 K. We also find the our photometric log g values are on
average 0.03 dex smaller than the LAMOST values with a
standard deviation of 0.37 dex. The mean log g error is 0.15
dex with a standard deviation of 0.07 dex. After inferring
on all of the data that passes our quality cuts (see Section
2.1), we select stars with inferred log g < 3.5 dex and 2500
K < Teff <5500 K as giant stars. How this selection looks
with our test data is shown in Figure 2.

3.3 Selecting Red Clump Stars

We make our selection of red clump stars using inferred log
g, Teff , ∆ν and ∆P. For each of these parameters we train
another MDN. For Teff and log g our network is trained on
a subset of 200,000 giants stars selected using the method
described in Section 3.2. Again we use one mixture compo-
nent as the output so the inferred value is the mean of the

Gaussian and the error is the width. In Figure 3, we show
that we can accurately derive the stellar parameters from
the photometry. On average our photometric log g values
are 0.02 dex greater than the values from LAMOST with
a standard deviation of 0.32 dex. The average error is 0.20
dex with a standard deviation of 0.10 dex. Our photomet-
ric Teffvalues are larger than the LAMOST values by K on
average with a standard deviation of 160 K, The average
Teff error is 3054 K with a standard deviation of 911,967 K.
For ∆ν and ∆P, we train on a subset of 30,000 stars from
the sample presented in Ting et al. (2018). For the ∆ν the
network also has one mixture component as the output and
we infer using the same method as Teff and log gṪhe distri-
bution of ∆P is bi-modal (see Figure 4). Using two mixture
components helps the network to learn to reproduce this
bi-modality. Therefore, the output of the ∆P network is a
two component Gaussian mixture model. Our inferred ∆P
is the weighted mean of the means of the two components
and the error is the weighted mean of the widths of the two
components. As the ∆P and ∆ν signal in the photometry is
weak, it is difficult to derive these parameters from the SED.
However, we do remarkably well (see Figure 3). On average
our derived ∆νvalues are only 0.06 µHz less than the val-
ues derived from the LAMOST spectra in Ting et al. (2018)
with a standard deviation of 1.75 µHz. The average error is
1.23 µHz with a standard deviation of 0.74 µHz. For ∆P, we
find our values are, on average, -2 s smaller than the values
derived in Ting et al. (2018) with a standard deviation of
75 s. The average error is 35 s with a standard deviation of
8.79 s.

To find the ideal red clump selection criteria, we look at
the true positive rate and the contamination as a function of
Teff , log g, ∆ν and ∆P. We bin our testing data using the in-
ferred parameters and calculate the contamination and true
positive rate within each bin. Although this is done in four
dimensions (Teff , log g, ∆ν and ∆P), we show flattened two
dimensional examples in Figure 5. We include bins with a
low contamination while also having a significant percentage
of the true red clump stars. Further information about the
final sample can be found in Section 4.1.

3.4 Deriving Distances

Once we have our red clump sample, we infer the distances
using the AllWISE W1 band similar to Ting & Rix (2019).
First, we perform an extinction correction using the G−W1
color and AG/AW1=16 (Hawkins et al. 2017). Next, we use
the less extincted stars to derive a relationship between the
inferred Teff and MW1. Finally, we derive the distance us-
ing the distance modulus with the inferred MW1 and the
extincted corrected W1 magnitudes.

4 RESULTS AND DISCUSSION

4.1 Red Clump Sample

In choosing our red clump sample, we prioritize a low con-
tamination over a complete sample. To choose which bins
from Figure 5 we will use in the final selection, we perform
a cumulative summation sorted by the contamination rate.
The results of this are shown in Figure 6. However, these

MNRAS 000, 1–6 (2018)



4 M. Lucey et. al.

4000 5000 6000
Teff, spec(K)

4000

5000

6000

T e
ff,

ph
ot

(K
)

1 2 3
log(g)spec

1

2

3

lo
g(

g)
ph

ot

200 400
Pspec(s)

100

200

300

P p
ho

t(s
)

5 10 15
spec( Hz)

5

10

15

ph
ot

(
Hz

)

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

lo
g(

N)

Figure 3. The stellar parameters (Teff , log g, ∆P and ∆ν) we
derive for giant stars compared to the spectroscopically derived

values from LAMOST and Ting et al. (2018). The mean difference

between the Teff is 24 K with a standard deviation of 160 K. The
mean difference between the log g is 0.02 dex with a standard

deviation of 0.32 dex. The mean difference between the ∆P is

-3 s with a standard deviation of 75 s and the mean difference
between the ∆ν is -0.06 µHz with a standard deviation of 1.75

µHz. The ∆P is the most effective parameter for selecting red

clump stars and the most difficult to derive from the photometry.
From this figure we can see we are effective at picking up all of the

red clump stars as the bottom right corner of the ∆P is empty.
However, we do suffer from contamination in the top left corner.

However, combining the ∆P with the other parameters can help

limit this contamination.

results are a slight idealized. The selection method to create
Figure 6 jumps around in the parameters space to selects
the bins with the lowest contamination rate. For ease of se-
lection, if we choose to only use adjacent bins we achieve a
contamination rate of ∼25 % and a true positive percentage
of ∼48%. These results are achieved by selecting stars with
4750 K < Teff ∆ν <5.5 µHz, and ∆P > 250 s.

4.2 Milky Way Map

In Figure 7 we show a preliminary map of the Milky Way
made with red clump stars. To make this map we use the
giant catalog from Poggio et al. (2018). This catalog does
not include any data with Galactic longitude 300 deg. <l
<360 deg. or Galactic latitude, |b| > 20 deg. It also only
includes stars with Gaia G <15.5 mag. This catalog contains
∼ million giant stars. After applying our selection method,
we find a catalog of ∼ 700,000 red clump stars with which
we derive distances and make a Milky Way map.

5 SUMMARY

Red clump stars are standard candles proven to give more
accurate distance measurements than parallaxes at distances
> 3 kpc (Ting et al. 2018). However, identifying large pris-
tine samples of red clump stars has historically been diffi-
cult. Red giant branch stars can have the same Teff and log

g making it easy to mistake them as red clump stars. The
asteroseismic parameters ∆P and ∆ν clearly separate he-
lium core-burning red clump stars from inert core red giant
branch stars (Bedding et al. 2011; Mosser et al. 2011; Stello
et al. 2013; Mosser et al. 2014). These parameters have only
been derived for ∼2,000 giant stars given the difficulty of the
measurement and the amount of time required for light curve
observations. Recently, Hawkins et al. (2018) demonstrated
that the ∆P and ∆ν can be derived from stellar spectra.
Specifically, red clump stars can be selected from the dif-
ference in the carbon to nitrogen ratio due to mixing that
occurs at the top of the red giant branch. In this work, we
select red clump stars from the ∼ 400 million stars which
have photometry from 2MASS, AllWISE, Gaia, and Pan-
STARRS. We derive the Teff , log g, ∆ν, and ∆Pof these
stars from 13 bands of photometry and parallax using a
mixed density network. We achieve a contamination rate of
∼25% when we select stars with Teff > 4700 K, ∆ν < 5µHz,
and ∆P > 250 s. We apply our selection method to the giant
catalog from Poggio et al. (2018). From the ∼600 million gi-
ant stars, we end with a red clump sample of ∼700,00 stars
with which we make a Milky Way map. The next step is
to apply our selection method to the entire sample of ∼
400 million stars. Although spectroscopic methods provide
a more pristine sample Hawkins et al. (2018); Ting et al.
(2018), the photometric sample is much larger and contains
more distant stars. For example, the LAMOST red clump
sample from Ting et al. (2018) has 70% of the stars within
3 kpc and does not reach into the Galactic center or the
outer Galactic halo. We expect our sample to precisely map
the bulge and the outer halo. Given that distances are an
essential but difficult measurement to make in Galactic ar-
chaeology, this map is sure to be used in many future studies
of the formation and evolution of the Milky Way.
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Figure 4. On the top left is the spectroscopic Kiel diagram of the convex hull from Ting et al. (2018) made and on the top right is the

same stars with our photometrically derived parameters. Both plots are colored by the ∆P derived from spectra in Ting et al. (2018).
It is clear that red clump stars (∆P > 200s) are more concentrated in certain regions of the parameter space. On the bottom left we

show the asteroseismic parameters (∆P and ∆ν) derived from LAMOST spectra in Ting et al. (2018). On the bottom right we show our

derived asteroseismic parameters. It is clear we can still pick out the red clump with ∆P > 200 s.
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Figure 5. The top plot shows the contamination rate in different

in Teff and log g(left) as well as ∆ν and ∆P (right) bins. This

contamination rate is calculated by selecting everything within
the bin as red clump and finding what percentage of them are

false positives using the Ting et al. (2018) as the ground truth.
The bottom plots show what percentage of the true positives are

in each bin. We can use this binning to optimize the selection

in all four parameters in order to simultaneously minimize the
contamination rate and maximize the true positive percentage.
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Figure 6. The accuracy of our selection method compared to other methods. The lines are calculated by cumulatively summing bins
like those shown in Figure 5. The result for our method where we bin in all four photometrically derived parameters (Teff , log g, ∆ν,

and ∆P) is shown in yellow. The result of only selecting in the photometric Teff and log g space is shown in green. The results of making
the same selection but using spectroscopically derived Teffand log g is shown in blue. This shows our method is the most accurate. We

can obtain a higher true positive percentage for a given contamination rate than the other two methods. The spectroscopic parameter

selection is more accurate because the precision and accuracy of the parameters is higher than the photometric parameters.
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Figure 7. Map of the Milky Way made with giant stars from Poggio et al. (2018). On the left is the density of stars in Galactic

coordinates, X and Y and on the right are the Galactic coordinates X and Z. The Galactic center is located at (0,0,0) in both plots and

the Sun is located at (8.3,0,0). The catalog from Poggio et al. (2018) does not include any stars out of the Galactic plane (|b| >20 deg)
and does not include an stars with 300 deg < l < 330 deg. This map will be improved when we use our own giant catalog. It will reach

far into the halo and deeper into the Galactic center.
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