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ABSTRACT
New large-scale transient surveys will observe millions of transient alerts each night,
making standard approaches of visually identifying new and interesting transients un-
feasible. We present a novel method of automatically detecting anomalies in real-time
transient light curves. Using state-of-the-art deep recurrent neural networks with Long
Short Term Memory (LSTM) units, we present one of the first methods designed to
provide anomaly scores of photometric data as a function of time. We build six gen-
erative models of six common transient classes, trained on light curve simulations
matching the observing properties of the Zwicky Transient Facility (ZTF) public sur-
vey. Our method is able to identify anomalous transients (such as the Kilonovae of
the GW170817 event, and peculiar SNe Ia) within days of their explosion. We can
obtain anomaly scores with respect to the six trained models. This method can also
be used for classification with a Bayesian model selection. We demonstrate the effec-
tive performance of our method on simulations and real data from the live ZTF data
stream.

Key words: methods: data analysis – methods: observational – techniques: photo-
metric, virtual observatory tools – supernovae: general

1 INTRODUCTION

Astronomy is reaching an unprecedented phase of big data,
observing more events than humans can possibly visually
examine alone. Upcoming large scale surveys of the tran-
sient universe such as the Large Synoptic Survey Telescope
(LSST) will observe two orders of magnitude more transient
phenomena than any survey to date, (Ivezić et al. 2019).
LSST is expected to receive over 10 million transient alerts
each night, making it utterly unfeasible to visually examine
each event. However, for a long time, discovery in astron-
omy has been driven by identifying anomalies in data sets.
With so much data, the task of identifying anomalous and
interesting objects for follow-up needs to be automated.

Anomaly detection (AD) is the task of finding outliers in
a data-driven fashion, and the aim is to find outliers that are
scientifically interesting, rather than random statistical fluc-
tuations. Within astronomy, anomaly detection algorithms
have been used to identify anomalous galaxy spectra (e.g.
Baron & Poznanski 2017), problematic objects in photo-
metric redshift estimation tasks (e.g. Hoyle et al. 2015), and
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others. Most approaches to Anomaly detection have gener-
ally fallen into two different methods: clustering or subspace
analysis. More recently, isolation forests and GANs have also
been applied to anomaly detection. However, dealing with
time-series data makes the standard machine learning ap-
proaches to AD unfeasible for real-time detection.

While efforts have been made to classify the real-time
transient universe photometrically (Muthukrishna et al.
2019a; Möller & de Boissière 2019), not much has been
put toward discovering new and interesting phenomena in
real-time data streams. Advanced neural network architec-
tures are non-feature-based approaches that have recently
been shown to have several benefits such as low computa-
tional cost, and being robust against some of the biases that
can afflict machine learning techniques that require “expert-
designed” features (Aguirre et al. 2018; Charnock & Moss
2017; Moss 2018; Naul et al. 2018). The use of Artificial
Neural Networks (ANN, McCulloch & Pitts 1943) and deep
learning, in particular, has seen dramatic success in image
classification, speech recognition, and computer vision, out-
performing previous approaches in many benchmark chal-
lenges (Krizhevsky et al. 2012; Razavian et al. 2014; Szegedy
et al. 2015).
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In time-domain astronomy, deep learning has recently
been used in a variety of classification problems including
variable stars (Naul et al. 2018; Hinners et al. 2018), su-
pernova spectra (Muthukrishna et al. 2019b), photometric
supernovae (Charnock & Moss 2017; Moss 2018; Möller & de
Boissière 2019; Pasquet et al. 2019), and sequences of tran-
sient images (Carrasco-Davis et al. 2018). A particular class
of ANNs known as Recurrent Neural Networks (RNNs) are
particularly suited to learning sequential information (e.g.
time-series data, speech recognition, and natural language
problems). While ANNs are often feed-forward (e.g. convo-
lutional neural networks and multilayer perceptrons), where
information passes through the layers once, RNNs allow for
cycling of information through the layers. They are able to
encode an internal representation of previous epochs in time-
series data, which along with real-time data, can be used for
classification.

A variant of RNNs known as Long Short Term Memory
Networks (LSTMs, Hochreiter & Schmidhuber 1997) im-
prove upon standard RNNs by being able to store long-term
information, and have achieved state-of-the-art performance
in several time-series applications. In particular, they revolu-
tionized speech recognition, outperforming traditional mod-
els (Fernández et al. 2007; Hannun et al. 2014; Li & Wu 2015)
and have very recently been used in the trigger word de-
tection algorithms popularized by Apple’s Siri, Microsoft’s
Cortana, Google’s voice assistant, and Amazon’s Echo. Naul
et al. (2018) and Hinners et al. (2018) have had excellent suc-
cess in variable star classification. Charnock & Moss (2017)
applied the technique to supernova classification. They used
supernova data from the SNPhotCC and fed the multiband
photometric full lightcurves into their LSTM architecture to
achieve high SNIa vs non-SNIa binary classification accura-
cies. Moss (2018) recently followed this up on the same data
with a novel approach applying a new phased-LSTM (Neil
et al. 2016) architecture. These approaches have the advan-
tage over previous supernova photometric classifiers of not
requiring computationally-expensive and user-defined (and
hence, possibly biased) feature engineering processes.

In this paper, we apply state-of-the-art deep learning
approaches to identify new, interesting and anomalous light-
curve behaviour to real-time transient data-streams. In sec-
tion 2, we describe the data used to train our deep neural
network (DNN) architecture. In section 3, we detail our re-
current neural network (RNN) based regression approach
to anomaly detection. In section 4, we evaluate the perfor-
mance of our generative models on simulated and real data.
And in section 5, we present the conclusions of our work.

2 DATA

2.1 Simulations

One of the key challenges with training algorithms for up-
coming transient surveys is the lack of labelled samples that
are appropriate for training. Moreover, even once a survey
commences, it can take a significant amount of time to ac-
cumulate a well-labelled sample that is large enough to de-
velop robust learning algorithms. To meet this difficulty for
LSST, the PLAsTiCC collaboration has developed the in-
frastructure to simulate light curves of astrophysical sources

with realistic sampling and noise properties. This effort was
one component of an open-access challenge to develop algo-
rithms that classify astronomical transients. By adapting su-
pernova analysis tools such as SNANA (Kessler et al. 2009)
to process several models of astrophysical phenomena from
leading experts, a range of new transient behavior included
in the PLAsTiCC dataset. The challenge has recently been
released to the public on Kaggle1 (The PLAsTiCC team
et al. 2018) along with the metric framework to evaluate
submissions to the challenge (Malz et al. 2018). The PLAs-
TiCC models are the most comprehensive enumeration of
the transient and variable sky available at present.

We use the PLAsTiCC transient class models and the
simulation code developed in Kessler et al. (2019) to create
a simulated dataset that is representative of the cadence and
observing properties of the ongoing public “Mid Scale Inno-
vations Program” (MSIP) survey at the ZTF (Bellm 2014).
This allows us to compare the validity of the simulations
with the live ZTF data stream, and apply our generative
models to it as illustrated in section 4.

2.1.1 Zwicky Transient Facility

ZTF is the first of the new generation of optical synoptic
survey telescopes and builds upon the infrastructure of the
Palomar Transient Factory (PTF, Rau et al. 2009). It em-
ploys a 47 square degree field-of-view camera to scan more
than 3750 square degrees an hour to a depth of 20.5 - 21 mag
(Graham & Zwicky Transient Facility (ZTF) Project Team
2018). It is a precursor to the LSST and will be the first
survey to produce one million alerts a night and to have a
trillion row data archive. To prepare for this unprecedented
data volume, we build an automated regressor for each tran-
sient class trained on a large simulated ZTF-like dataset that
contains a labelled sample of transients.

We built simulations matching the observing proper-
ties of the ZTF using SNANA (Muthukrishna et al. 2018).
SNANA simulates millions of light curves for each model,
following a class-specific luminosity function prescription
within the ZTF footprint. The sampling and noise prop-
erties of each observation on each light curve is set to reflect
a random sequence from within the observing conditions li-
brary. The simulated light curves thus mimic the ZTF ob-
serving properties with a median cadence of 3 days in the
g and r passbands. As ZTF had only been operating for
four months when we constructed the observing conditions
library, it is likely that our simulations are not fully repre-
sentative of the survey. Nevertheless, this procedure is more
realistic than simulating the observing conditions entirely,
as we would have been forced to do if we had developed
our work for LSST or WFIRST. We verified that the simu-
lated light curves have similar properties to observed tran-
sient sources detected by ZTF that have been announced
publicly. The dataset consists of a labelled set of 48029 sim-
ulated transients evenly distributed across a range of differ-
ent classes. An example of a simulated light curve from each
class is shown in Fig. 1.

The specific models used in the simulations derived
from Kessler et al. (2019) are SNIa-norm: Guy et al. (2010);

1 https://www.kaggle.com
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Figure 1. The light curves of one example transient from each

of the 12 transient classes is plotted with an offset. We have
only plotted transients with a high signal-to-noise and with a

low simulated host redshift (z < 0.2) to facilitate comparison of

light curve shape between the classes. The dark-coloured square
markers plots the r band light curves of each transient, while the

lighter-coloured circle markers are the g band light curves of each

transient.

Kessler et al. (2013); Pierel et al. (2018), SNIbc: Kessler
et al. (2010); Pierel et al. (2018); Guillochon et al. (2018);
Villar et al. (2017), SNII: Kessler et al. (2010); Pierel et al.
(2018); Guillochon et al. (2018); Villar et al. (2017), SNIa-
91bg: (Galbany et al. in prep.), SNIa-x: Jha (2017), pointIa:
Shen et al. (2010), Kilonovae: Kasen et al. (2017), SLSN
(Super-luminous SNe): Guillochon et al. (2018); Nicholl
et al. (2017); Kasen & Bildsten (2010), PISN (Pair Insta-
bility SNe): Guillochon et al. (2018); Villar et al. (2017);
Kasen et al. (2011), ILOT (Intermediate Luminosity Tran-
sients): Guillochon et al. (2018); Villar et al. (2017), CART
(Calcium-rich Transients): Guillochon et al. (2018); Villar
et al. (2017); Kasliwal et al. (2012), TDE (Tidal Disruption
Events): Guillochon et al. (2018); Mockler et al. (2019); Rees
(1988).

Each simulated transient dataset consists of a time se-
ries of flux and flux error measurements in the g and r ZTF
bands, along with sky position, Milky Way dust reddening, a
host-galaxy redshift, and a photometric redshift. The mod-
els used in PLAsTiCC were extensively validated against
real observations by several complementary techniques, as
described by Narayan et al. (2019, in prep.). We split the
total set of transients for each class into two parts: 80% for
the training set and 20% for the testing set, respectively. The
training set is used to train the generative model to predict
the next photometric data given all data until that point in
time, while the testing set is used to test the performance of
the model.

2.1.2 Trigger for Issuing Alerts

The primary method used for detecting transient events is
to subtract real-time or archival data from a new image to
detect a change in observed flux. This is known as difference
imaging, and has been shown to be effective, even in fields
that are crowded or associated with highly non-uniform un-
resolved surface brightness (Tomaney & Crotts 1996; Bond
et al. 2001). Most transient surveys, including ZTF, use this
method, and ‘trigger’ a transient event when there is a detec-
tion in a difference image that exceeds a 5σ signal-to-noise
(S/N) threshold. Throughout this work, we use trigger to
identify this time of detection.

3 METHOD

3.1 Light curve preprocessing

Arguably, one of the most important aspects in an effective
learning algorithm is the quality of the training set. In this
section we discuss efforts to ensure that the data is processed
in a uniform and systematic way before we train our DNN.

The light curves are measured in flux units, as is ex-
pected for the ZTF difference imaging pipeline. The simu-
lations have a significant fraction of the observations being
5-10 sigma outliers. These outliers are intended to replicate
the difference image analysis artifacts, telescope CCD de-
ficiencies, and cosmic rays seen in observational data. We
perform ‘sigma clipping’ to reject these outliers. We do this
by rejecting photometric points with flux uncertainties that
are more than 3σ from the mean uncertainty in each pass-
band, and iteratively repeat this clipping 5 times. Next, we
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Figure 2. An example SNIa fit with Gaussian Process regres-
sion. The two light curves are fit with two GPs with a Matern-32,

respectively, but the hyperparameters of each are shared by op-

timising a combined log-likelihood. The green and red represent
the g and r passbands, respectively. The data is shown with un-

certainties, the solid line is the mean of the GP samples, and the

shaded region shows the 1 − σ variation of the GP samples.

correct the light curves for interstellar extinction using the
reddening function of Fitzpatrick (1999). We assume an ex-
tinction law, RV = 3.1, and use the central wavelength of
each ZTF filter to de-redden each light curve listed as fol-
lows2:

g: 4767 Å, r: 6215 Å.

3.2 Gaussian process regression

Gaussian process (GP) regression has been shown to be
effective for astronomical light curve modelling. Recently,
Lochner et al. (2016) and Boone (2019) used GP regression
as a core part of the modelling process of their light curve
classification approaches. GP regression enables us to deal
with missing data and to interpolate the light curves at reg-
ular intervals, while also incorporating uncertainty.

We use the celerite package (Foreman-Mackey et al.
2017) to fit each light curve with a GP. We use a Matern
kernel, and share the same parameters for all passbands
in a light curve by minimising the combined negative log-
likelihood of the fit to each passband light curve. An example
of our GP fit to a SNIa in the training set is illustrated in
Figure 2.

We augment our training set by sampling the GP re-
gressive fit of each transient 100 times, effectively increasing
the size of our training set 100-fold.

Irregularly sampled time-series data is a common prob-
lem in machine learning, and is particularly prevalent in
astronomical surveys where the intranight cadence choices
and seasonal constraints lead to naturally arising temporal
gaps. Therefore, interpolate from the gaussian process such
that each light curve is sampled at 3-day intervals between

2 We use the extinction code: https://extinction.

readthedocs.io

−70 < t < 80 days since trigger (or as far as the observations
exist), to give a vector of length n = 50, where we set the
values outside the data range to zero. We ensure that each
light curve in a given passband is sampled on the same 3-
day grid. The final input image for each transient is a matrix
with each row composed of the imputed light curve fluxes
for each passband and an additional row containing repeated
values of the MW dust reddening. Hence, the input image
is an n× (p+ 1) matrix, where p is the number of passbands.

3.3 Deep Neural Network Architecture

Recurrent Neural Networks (RNNs), such as Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU)
networks have been shown to achieve state-of-the-art perfor-
mance in many benchmark time-series and sequential data
applications (Bahdanau et al. 2014; Sutskever et al. 2014;
Che et al. 2018). Its success in these applications is due to
its ability to retain an internal memory of previous data, and
hence capture long-term temporal dependencies of variable-
length observations in sequential data. We extend this archi-
tecture to our case with a time-varying multi-channel (multi-
ple passbands) input and a time-varying multi-class output.

The deep neural network (DNN) is illustrated in Fig. 3.
We have developed the network with the high level Python
API, Keras (Chollet et al. 2015), built on the recent highly
efficient TensorFlow machine learning system (Abadi et al.
2016). We describe the architecture in detail here.

Input: The input is an n × (p + 1) matrix. However, as we
are implementing a sequence regressor, we can consider the
input at each time-step as being vector of length (p + 1).
First LSTM Layer: Long Short Term Memory networks

are an improved version of a standard RNN. They are able
to capture long-term dependencies in time-varying data with
parameters that control the information that should be re-
membered at each step along the light curve. We use the
first LSTM layer to read the input sequence one time-step
at a time and encode it into a higher-dimensional represen-
tation. We set-up this LSTM layer with 100 units such that
the output is a vector of shape 1 × 100.
Second LSTM Layer: The second LSTM layer is condi-

tioned on the input sequence. It takes the output of the
previous LSTM and generates an output sequence. Again,
we use 100 units in the LSTM to maintain the n×100 output
shape. We use uni-directional LSTMs that enable only infor-
mation from previous time-steps to be encoded and passed
onto future time-steps.
Batch Normalization: We then apply Batch Normalization

(first introduced in Ioffe & Szegedy 2015) to each LSTM
layer. This acts to improve and speed up the optimization
while adding stability to the neural network and reducing
overfitting. While training the DNN, the distribution of each
layer’s inputs changes as the parameters of the previous lay-
ers change. To allow the parameter changes during training
to be more stable, batch normalization scales the input. It
does this by subtracting the mean of the inputs and then
dividing it by the standard deviation.
Dropout: We also implement dropout regularization to

each layer of the neural network to reduce overfitting during
training. This is an important step that effectively ignores
randomly selected neurons during training such that their

MNRAS 000, 1–10 (2019)
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Figure 3. Schematic of the deep recurrent neural network architecture used in our method. Each column in the diagram is one of

the n time steps of the processed light curve, while each row represents a different neural network layer. The grey text in each block

states the shape of the output matrix of each layer in that block. The input image is composed of an n × (p + 1) matrix consisting of
the light curve fluxes in each passband and Milky Way reddening. Two uni-directional LSTM layers of size 100 are used for encoding

and decoding the input sequences, respectively. It is in these RNN layers that information about previous time-steps is encoded. Batch

normalization is applied between each layer to normalize the network parameters and hence, speed the training process. To counter
overfitting during training, we employ the dropout optimization technique (Srivastava et al. 2014) to the neurons in each of the LSTM

and Batch Normalization layers, and set the dropout rate to 20%. Finally, a fully-connected (dense) layer is applied at each time-step.

We wrap the final layer in Keras’ Time Distributed layer so that each time step is treated independently, and only uses information from
the current and previous time-steps.

contribution to the network is temporarily removed. This
process causes other neurons to more robustly handle the
representation required to make predictions for the missing
neurons, making the network less sensitive to the specific
weights of any individual neuron. We set the dropout rate
to 20% of the neurons present in the previous layer each
time the Dropout block appears in the DNN in Fig. 3.
Dense Layer: A dense (or fully-connected) layer is the sim-

plest type of neural network layer. It connects all 100 neu-
rons at each time-step in the previous layer using equation
1. As we are interested in time-varying predictions, we wrap
this Dense layer with a Time-Distributed layer, such that
the dense layer is applied independently at each time-step,
hence giving an output matrix of shape n × p.
Neurons: The output of each neuron in a neural network

layer can be expressed as the weighted sum of the connec-

tions to it from the previous layer:

ŷi = f ©«
M∑
j=1

Wi j xj + bi
ª®¬ , (1)

where xj are the different inputs to each neuron from the
previous layer, Wi j are the weights of the corresponding in-
puts, bi is a bias that is added to shift the threshold of where
inputs become significant, j is an integer running from 1 to
the number of connected neurons in the previous layer (M),
and i is an integer running from 1 to the number of neurons
in the next layer. For the Dense layer, x is simply the (1×100)
matrix from the output of the LSTM and Batch Normalisa-
tion, y is made up of the p output passband fluxes, j runs
from 1 to p and i runs across the 100 input neurons from
the LSTM. The matrix of weights and biases in the Dense

MNRAS 000, 1–10 (2019)
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Figure 4. The performance of six generative models on example transients taken from the testing set of each, respectively. The observed

data is shown with uncertainties in the g and r band. The GP fit is shown as the shaded regions, with the mean GP fit shown as the
solid lines. The predictions from the deep neural network regressor is illustrated as the dashed line with star points. The predictions use

all the data previous in time to each given data point. In each case, the predictions are very close to the GP fits, indicating that each of

the regressive models are able to fit light curves int heir testing set well.

layer and throughout the LSTM layers are some of the free
parameters that are computed by TensorFlow during the
training process.

Activation function: As with any neural network, each
neuron applies an activation function f (·) to bring non-
linearity to the network and hence help it to adapt to a
variety of data. For feed-forward networks it is common to
make use of Rectified Linear Units (ReLU, Nair & Hinton
2010) to activate neurons. However, the LSTM architecture
uses sigmoid activation functions as it outputs a value be-
tween 0 and 1 and can either let no flow or complete flow of
information from previous time-steps.

The several layers in the DNN create a model that has
over one hundred thousand free parameters. As we feed in
our training set in batches of 64 light curves at a time,
the neural network updates and optimizes these parameters.
While the size of the parameter space seems insurmountable,
the Adam optimizer is able to compute individual adaptive
learning rates for different parameters from estimates of the
mean and variance of the gradients and has been shown to
be extraordinarily effective at optimizing high-dimensional
deep learning models.

With the often quoted ‘black box’ nature of machine
learning, it is always a worry that the machine learning al-
gorithms are learning traits that are specific to the training
set but do not reflect the physical nature of the classes more
generally. Ideally, we would like to ensure that the model
we build both accurately captures regularities in the train-
ing data while simultaneously generalizing well to unseen
data. Simplistic models may fail to capture important pat-
terns in the data, while models that are too complex may

overfit random noise and capture spurious patterns that do
not generalize outside the training set. While we implement
regularization layers (dropout) to try to prevent overfitting,
we also monitor the performance of the models on the train-
ing and testing sets during training. In particular, we ensure
that we do not run the training over so many iterations that
the difference between the values of the objective function
evaluated on the training set and the testing set become
significant.

4 RESULTS

In this section we detail the performance of our method on
simulated ZTF light curves and on some real data from
the live MSIP ZTF data stream. We trained six indepen-
dent regressive models for SNe Ia, SNe II, SNe Ibc, SLSNe,
TDEs, and AGN, respectively. Each training set consisted
of approximately 8000 light curves. Each of the light curves
were fit with Gaussian Process regression, and were sampled
100 times, increaseing the training set 100-fold. We tested
the performance of each model on approximately 2000 light
curves.

In Figure 4, we illustrate the performance of our six
generative models on example light curves in the testing
sets of each model. The data is shown with uncertainties, the
shaded green and red regions show the 1−σ Gaussian process
regression samples to the data, and the solid line shows the
mean GP fit. The dashed line with star markers illustrate the
deep neural network generative model predictions. In all six
examples, the predictions are very close to the GP fits. Each
prediction uses only the data in the previous time-steps.

MNRAS 000, 1–10 (2019)



Real-time anomaly detection 7

Figure 5. Using the SNIa generative model, we try to fit an ex-

ample kilonova from our simulated data set. The top panel shows
the GP mean as the solid line and the 1−σ samples as the shaded

regions. The dotted line with star points are the DNN’s predic-
tions. In the bottom panel, the χ2 anomaly score metric is plotted

as a function of time. The poor fit highlights that kilonovae are

anomlaous with respect to a model trained on SNe Ia.

We define a χ2 metric to highlight the distance of the
truth to the DNN predictions.

χ2 =
(GPmean − predictions)2

σ2
GP

(2)

This metric can be used as a real-time anomaly score.
Higher values indicate that the regressive model was less able
to fit the data given the training set, while lower scores indi-
cate that the generative model was able to effectively fit the
data. In Figure 5, we illustrate an example simulated kilono-
vae being fit with the SNIa regressive model. The top panel
shows the fit, while bottom panel shows the χ2 anomaly
score as a function of time. The poor fit and high anomaly
scores indicate that this transient is flagged as anomalous
with respect to the SNIa model - showing a first-order suc-
cess in our method. We note that most kilonovae in data
set were similarly flagged as highly anomalous at a similar
epoch.

To compare the anomaly scores of all transients in our
data set against our trained generative models, we have fit
every transient in the testing sets with each of the regressive
models. Since we obtain anomaly scores as a function of
time, we use the peak anomaly score of each transient, take
the mean of this for each transient class, and display this in
Figure 6.

The plot highlights the similarity of each trained class

to every other class, and acts as a similarity matrix for
the shown transient classes. Higher numbers indicate classes
that are more dissimilar, and lower number indicate classes
that are more similar. The model trained on the SNIa, as
expected, has the lowest score for SNIa, indicating that it
can fit SNe Ia very well. Similarly, SNIa-x also have very
low scores due to their similarity to normal SNe Ia. Core
collapse SNe, SNII, SNIIn, and SNIbc are the next lowest,
indicating that these are more similar to normal SNe Ia than
the other classes. Kilonovae stand out as very anomalous for
every trained model, indicating that the short lifetime and
low luminosity of these classes cannot be well-fit with the
generative models.

Similar trends can be seen in the other rows of the ma-
trix. For each trained model, the lowest number corresponds
to the same class, as expected, showing that each model can
be well-fit on what it was trained on. The large numbers on
the Ia-91bg class highlight potential problems with this class
that requires further examination. The low numbers in the
AGN row highlight that the AGN model can fit nearly any
type of transient class (except for kilonovae). This is perhaps
due to the intrinsic variability of AGN, illustrating that the
DNN learned that there are many degenerate functions that
can fit an AGN.

Overall, Figure 6 highlights some interesting similarities
between transient classes, and confirms what may already
be known about their general behaviour. It highlights the
overall performance of method on the testing sets, and ef-
fectively shows that we are able to identify anomalies with
this method.

After training our model on simulated ZTF-like data,
we next tested it’s performance on real data from the pub-
lic MSIP ZTF data stream. In Figure 7 and 8, we plot
ZTF18acahuph and ZTF19aadnmgf, real spectroscopically
confirmed peculiar SNIa and normal SNIa discovered by
ZTF earlier this year, respectively. The top panel of Fig-
ure 7, shows the observed photometric data of the peculiar
SNIa, while the bottom panel plots the anomaly scores for
five of our generative models. We can see that the light curve
is anomalous for all of the five models, but least anomalous
for SNIa (green line). This illustrates the effectiveness of our
method on real data. Peculiar SNIa should are interesting to
many transient astronomers, and obtaining following them
up, may teach us about their properties, physics, and pro-
genitor system. The high anomaly scores could be used to
prioritise follow-up. The fact that it is least anomalous for
SNIa leads to the idea that perhaps this method can be used
for classification.

In Figure 8, we plot a SNIa discovered by ZTF in the top
left panel. The bottom left panel plots the anomaly scores
as a function of time for five trained models. In the right
panel, we define the likelihood,

Likelihood = exp
(
− χ

2

2

)
. (3)

While future work should aim to do a more thorough
Bayesian model comparison, the likelihood measure can be
viewed as a trivial method to classify light curves. The SNIa-
norm model has the highest likelihood score, correctly in-
dicating that the transient is most likely to be a SNIa and
least likely to be a SLSN-I. The AGN model is the next most
likely, but this is another example of the AGN model being

MNRAS 000, 1–10 (2019)
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Figure 6. The matrix illustrates the similarity of different transient classes, with lower number being more similar, and higher numbers
being less similar. The vertical axis shows seven trained generative models, and the horizontal axis are transients from a range of classes.

Each transient in our dataset is fit with the seven generative models, and the peak anomaly score of each is recorded. The mean of the

peak anomaly scores for each class are the numbers shown. Each trained model is most similar to transients from it’s own class, and
most dissimilar to kilonovae.

able to fit nearly any transient due to its intrinsic variability
as illustrated by the similarity matrix in Figure 6.

5 CONCLUSIONS

Existing and future wide-field optical surveys will probe
new regimes in the time-domain, and find new astrophysical
classes, while enabling a deeper understanding of presently
rare classes. In addition, correlating these sources with alerts
from gravitational wave, high-energy particle, and neu-
trino observatories will enable new breakthroughs in multi-
messenger astrophysics. However, the alert-rate from these
surveys far outstrips the follow-up capacity of the entire as-
tronomical community combined. Realising the promise of
these wide-field surveys requires that we characterize sources
from sparse early-time data, in order to select the most in-
teresting objects for more detailed analysis.

Standard supervised learning approaches are unable to
deal with the scope for new discovery offered by the wealth of
data from upcoming surveys. Anomaly detection algorithms
enable an opportunity to automatically flag unusual and in-
teresting transients for futher follow-up. We have detailed
the development of a real-time anomaly detection framework
for identifying unusual transients in large-scale transient sur-
veys. Our deep recurrent neural network is well-suited for
the millions of alerts that ongoing and upcoming wide-field
surveys such as ZTF and LSST will produce. It allows us to

identify anomalies as a function of time, and we have demon-
strated its performances on both ZTF-like simulations and
real ZTF light curves from the public MSIP survey.
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Figure 8. ZTF19aadnmgf, a spectroscopically confirmed normal SNIa discovered by ZTF is plotted in the top-left panel. Five generative

models are fit to the light curve, and the anomaly scores as a function of time of each are plotted in the bottom-left panel. The likelihood
of each model is plotted on the right, and illustrates that the transient is most likely a SNIa. The high score to the AGN class again

indicates that the variability of AGN mean that the DNN trained on AGN can fit nearly any transient (as further illustrated by Figure

6.
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