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1 Introduction

Galaxy clusters are important probes of cosmology and structure growth in the Universe. Measuring the
number density of galaxy clusters as a function of mass and redshift has the potential to yield some of the
tightest constraints on the dark energy equation of state (Allen et al. 2011). However, accurately determining
their masses remains challenging. Weak gravitational lensing directly probes the total matter content of a
galaxy cluster and can provide an unbiased measurement of the total mass (Applegate et al. 2014). The lensed
source can be either other galaxies or the cosmic microwave background (CMB). The CMB is particularly
useful for high redshift clusters due to the difficulties in observing galaxies with sufficient signal-to-noise
(SNR) in other frequencies at very high redshifts. The CMB also has simpler systematics uncertainties, as we
have extremely good measurements of the statistical properties of the CMB and we know the precise redshift
where the CMB photons originate. However, the SNR of the CMB-cluster lensing signal is comparatively
weak for an individual galaxy cluster (Hu et al. 2007).

CMB-cluster lensing refers to the gravitational lensing of the CMB by massive galaxy clusters. The
scales of interest are typically a few arc-minutes, corresponding to the angular size of galaxy clusters. On
these scales, the CMB is well approximated as a gradient field across the position of the galaxy cluster. The
direction of the CMB gradient is nearly independent for temperature and polarization. Gravitational lensing
of this gradient by a galaxy cluster produces a dipole-like pattern oriented with the gradient, but with the
hot and cold directions swapped (Seljak and Zaldarriaga 2000). We may also refer to this phenomenon as
a butterfly pattern. For a given cluster mass and redshift, the magnitude of this dipole scales linearly with
the magnitude of the CMB gradient.

The proposed non-machine learning methods of detecting CMB cluster lensing include Wiener filter
approach to estimate the lensing distortion (Holder and Kosowsky 2004), a quadratic estimator (QE) which
uses the correlation between the unlensed CMB gradient and the lensing signal (Melin and Bartlett 2015),
maximum likelihood estimator (MLE) by fitting lensing templates to the lensed CMB maps (Lewis and King
2006; Baxter et al. 2015), and ML lensing estimator using a pixel-space likelihood (Raghunathan et al. 2017).
While all these non-machine learning methods show different level of success, machine learning techniques,
particularly convolutional neutral networks (CNN), are emerging as a powerful tool to perform classification
and regression in Astronomy (Ntampaka et al. 2019b). Cluster masses were successfully predicted with CNN
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based on X-ray simulations (Ntampaka et al. 2019a). The CMB background was reconstructed in order to
remove lensing effects on scales of several degrees (Caldeira et al. 2019). However, there is still no work
which would precisely estimate cluster masses for large enough sample of clusters.

The ultimate goal of this project is to perform precise cluster mass estimation based on CMB cluster
lensing for sample of clusters large enough for analyses of large cosmological surveys, such as Simons Ob-
servatory (Ade et al. 2019) and CMB-S4 (Abazajian et al. 2019). These surveys will significantly improve
the sensitivity and resolutions of the CMB measurements, promising to advance our understanding of the
cosmic structure formation from early universe to non-linear structure formation of the universe. At the
same time, advances in computational cosmology has recently enabled creation of all-sky CMB lensing maps
based on the light cone simulations of LSS (Takahashi et al. 2017). Such simulations allow to build a precise
estimator of cluster mass, and perform tests before the final data is gathered by ongoing and forthcoming
CMB experiments. The fact that MLE, which can be also considered as a machine learning method, achieves
better results than QE, which fits lensing templates, justifies usage of machine learning and makes it highly
complementary to the work done so far. It is in fact the most promising approach in extraction of small
lensing signals from large and complex datasets. Therefore, we train deep learning method, CNN, to esti-
mate cluster masses based on full-sky lensing simulation (Takahashi et al. 2017). In section 2, we present
the methodology, including data description, patch extraction, testing methods and CNN training. Section
3 gives results for experiments with different source plane redshifts. In the last section 4 we conclude and
provide outline of the future steps.

2 Methodology

2.1 Ray tracing simulation

We use a full-sky gravitational lensing simulation data (Takahashi et al. 2017). It provides 108 data sets
generated by performing multiple-lens plane ray-tracing through high-resolution cosmological N-body simu-
lations. The data sets include full-sky convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals
of 150h−1Mpc comoving radial distance (corresponding to a redshift interval of ∆z ≈ 0.05 at the nearby
universe), enabling the construction of a mock shear catalog for an arbitrary source distribution up to z=5.3.
The simulation also yields maps of gravitational lensing deflections for a source redshift at the last scattering
surface. The CMB maps are available in two resolutions: Nside = 4096, 8192 corresponding to pixel sizes of
0.86 and 0.43 arcmin, respectively.

2.2 Data processing

The strength of CMB lensing pattern depends not only on cluster mass but also on cluster redshift. To start
with a problem which gives consistent behaviour of cluster and lensing signal, we limit the halo dataset to
minimum mass M200b (the radius at a mean halo density 200 times larger than the background density) to
1014M⊙ and redshift range to 0.1− 0.3. The data cuts are performed on M200b to keep consistency between
our approach and a dataset of extracted CMB images which we received from the authors of simulation in
the first week of the project. When training machine learning (ML) model, we choose to use M500c (the
radii at halo density 500 times larger than the cosmological critical density) in order to stay consistent with
cluster mass predictions from X-ray images (Ntampaka et al. 2019a). This inconsistency between masses
within this work should be simplified in the later stages of the project. From the mass function analysis, we
know that the massive clusters are rare and their abundance is possibly several orders of magnitudes less
than the abundance of low mass clusters. Hence, as a starting simpler test, we flatten the mass function to
create a homogeneous training dataset with equal samples for each mass bin. The distribution is flatten by
binning it into 100 bins and limiting size of each bin to 100 halos, as shown in figure 1. This gives about
3000 halos for one realization of simulated data.

In order to extract CMB patches around halo locations, we use the HEALPix1 library (Górski et al.
2005). We use simple cartesian projection, and every time a patch is extracted, the map is rotated in such
a way which makes halo location appear in a projection’s center, which minimizes any projection effects.

1http://healpix.sourceforge.net
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Figure 1: Histogram of M500c for one realization of simulated data. Left: before flattening, right: after
flattening. The completely unbalanced original set should be well balanced in mass range (0, 4) after the
flattening.

The pixel size in projection is 0.5 arcmin. The patches extracted for CNN processing are of size 32x32
pixels which corresponds to 16x16 arcmin patches. This covers the most important lensing area which size
is that of a cluster, about 2-4 arcmin in diameter. Figure 2 shows convergence and CMB maps for the most
massive cluster with M500c = 13.45 · 1014M⊙. From left, the first image shows convergence from ray tracing
which originates at redshift 1. It shows a clean convergence peek. The second image shows convergence for
source redshift of 1100, related to CMB. Here, we can see that the images are getting more noisy due to
projection effects from redshift 1100 to 0. We smooth those images with Gaussian kernel which sigma equals
0.5 arcmin (1 pixel), as shown in the 3rd image. The last image shows CMB temperature in µK, which is
expected to contain a lensing ”butterfly” pattern of scale around 10µK. Unfortunately, we did not manage
to find those patterns in the simulation. We speculate that the effect might be smaller than expect due to,
for instance, projection effects. To clarify on that issue, it wold be necessary to look into a difference of
lensed and unlensed images and look for the pattern in the image difference. The focus of the project goes
to learning the cluster mass from convergence maps in order to see how projection effects between source
redshift of 1 and 1100 affect the mass estimation.

Figure 2: Extracted patches around the most massive halo with M500c = 13.45M⊙. From left, first:
convergence at source redshift 1, second: convergence at source redshift 1100 (CMB redshift), third: the
same as second, smoothed with Gaussian kernel of size 0.5 arcmin (1 pixel), fourth: CMB temperature in
µK. The lensing patterns is expected to be visible in the last image.

Figure 3 shows convergence maps for 4 clusters at M500c ≈ 1014M⊙. We can see that apart from central
convergence peeks, there is also large scale structure imprinted around the clusters. This effect increase
when we move from redshift 1 to 1100. We can see that already at source redshift 1, values in the central
convergence peeks vary from 0.1 to 0.3, which makes it hard to precisely learn cluster mass from projected
convergence maps.
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Figure 3: Comparison of redshift plane 1100 (top row) and 1 (bottom row) for 4 clusters (columns) at
M500c ≈ 1014M⊙. LSS projection effects are already visible at source redshift 1 and become severe at source
redshift 1100.

2.3 Testing methods

In order to validate the machine learning model, we extract 3 different validation sets from the training
one. First, we choose 5% of both the most and the least massive clusters to create 2 validation sets. This
leaves 90% of the training set from which we randomly pick 10% (9% in terms of the original dataset size)
as the third and last validation set. The remaining data is used as training. As a given halo can be present
at many locations, due to several ray paths affected by the halo gravitational potential, we use a group
split about halo IDs in the creation of random validation set. It ensures that training halos are not used in
validation. Such strategy of choosing validation sets evaluates the machine learning model on the hardest
possible problems which include extrapolation tests on highest and lowest mass clusters. This is beneficial
due to several reasons: it properly tests model overfitting, allows to trace such effects already during a
training and shows how a network performs on different halo masses. The same random score may be
achieved with completely different performance on the high and low mass end, and usually the non random
validation sets lead to stopping the network training earlier than random validation sets. On those subsets,
we report standard mean square error (MSE) and coefficient of determination (R2) which ranges from -1 to
1, with 0 corresponding to prediction of mean target values.

2.4 CNN architecture

The CNN architecture consists of the following layers:

1. input: 20x20 (0.5 arcmin pixel size)

2. convolution: 3x3x16

3. convolution: 3x3x32

4. convolution: 3x3x64

5. flatten (0.1 dropout): 14x14x64 = 12544

6. dense (0.1 dropout): 200

7. dense: 100

8. dense: 20
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9. output: 1

The network was build and trained using Keras (Chollet et al. 2015) with Tensorflow backend (Abadi et al.
2015). All the layers, except for the output, use ReLU activation. The images were normalized using
Keras feature wise center and normalization. Horizontal and vertical flips are used for data augmentation.
Choosing a small image size of 20x20 pixels, with pixel size 0.5 arcmin, which crops the most around halo
center proves to give the best results. For such small images, max pooling is not applied. We note that in
order for the network to learn LSS projection effect it might be beneficial to include more area around the
cluster center. More experiments would have to be performed to see whether such effects can be learned
with enough precision to improve mass estimations. We also test different smoothing scales for the redshift
source 1100, which shows that a small smoothing scale of 0.5 arcmin gives some improvement, while using
larger smoothing tends to loose some information.

3 Results

In two main experiments, we estimate cluster mass from convergence maps originating at source redshift
1100 and around 1. Figure 4 shows training histories for those two experiments. The left plot visualizes the
two most common errors: training and random test. Mass estimation based on cleaner maps from source
redshift around 1 gives much better results, which shows how projections effects introduce ”noise” into
convergence maps. The closer plane experiment gives MSE=0.37, R2=0.68, and the CMB plane experiment
gives MSE=0.64, R2=0.45. The low and high mass end tests give us interesting results, with much better
results for the low mass test. This is contrary to the intuition, as we would expect high mass clusters to
imprint stronger on the convergence maps allowing for easier mass estimation. The explanation is that high
mass clusters are found in more dense areas of LSS which makes projection effects more visible. Figure 5
inspects relation between predicted and true mass. In the left plot, we can see results for experiment with
the CMB plane, and the right one shows closer plane around redshift 1. The closer plane gives much better
results at low mass end, but the problems due to LSS projection are significant from M500c > 1014M⊙.

Figure 4: Training histories for experiments at plane redshift 1100 and around 1. Left : training and random
test errors, middle: low mass end errors, right : high mass end errors. Source redshift around 1 and loow
mass clusters give significantly better results, due to less projection effects from LSS.

4 Conclusion

We tried to estimate cluster mass based on CMB cluster lensing signal. This signal was already detected
in surveys such as Planck, however, there is no pipeline which would perform cluster mass estimation for
cluster sample large enough for analyses of forthcoming cosmological surveys, such as Simons Observatory
and CMB-S4. On the theoretical side, recent advances in computational cosmology and data science provide
access to all-sky, high-resolution CMB lensing simulations as well as a powerful and new machine learning
tool, such as the convolution neural network (CNN). It is the most promising approach in detecting faint
lensing signals in large and complex CMB datasets.

In the chosen lensing simulation (Takahashi et al. 2017), we were unable to visually confirm lensing
patterns on scales of cluster size, 2-4 arcmin, and 10µK as estimated theoretically. Instead, we choose to
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Figure 5: Scatter plots of predicted against true mass. Left : plane redshift 1100, right : plane redshift 1.

work with convergence maps, which are source of any lensing phenomenons. Findings of this analysis should
be also important and helpful in future processing of temperature maps. We perform cluster mass estimation
based on a training set of 3000 galaxy clusters. At CMB plane, we achieve MSE=0.64, R2=0.45. The results
are not adequate for cosmological analysis yet, but we manage to analyse the projection effects originating
at different source redshifts with respect to different mass clusters.

In order to create a working pipeline for cluster mass estimation based on CMB cluster lensing signal in
temperature maps, we consider the following steps:

• make sure that CMB cluster lensing is detectable in training data

– use the ray tracing code to get the non-lensed CMB temperature maps and look for lensing
patterns in difference between original and lensed images

– use a different training dataset on which standard CMB cluster lensing detection methods already
work

• train a machine learning model for cluster lensing pattern detection

– process lensed CMB temperature maps with CNN

– variational auto-encoder for non-Gaussianities detection

• add cluster redshift information as additional input to CNN

• comparison with standard methods of CMB cluster lensing detection: QE, MLE

• CNN model interpretability

Our key results show how LSS projection effects highly affect the mass estimation, being significantly
harder to process at higher source redshifts, especially for high mass clusters which are found in more dense
regions of LSS. The best way to further look for the CMB cluster lensing signal would be to compare lensed
and unlensed CMB images. Since the CMB unlensed maps were not readily available publicly, we plan
to perform the ray-tracing simulations of CMB photons ourselves using the RAYTRIX code (Hamana and
Mellier 2001; Sato et al. 2009; Schäfer et al. 2012). A promising machine learning method to test next is
variational auto-encoder. Benefiting from the fact that CMB consists of Gaussian patterns, we will train
a model to encode non-lensed CMB images into several Gaussian parameters. Using a trained network on
lensed images would yield images with lensing effects removed and easily accessible in a difference of original
and recreated images. Such network would be beneficial not only for lensing detection, but for any other
problem resulting in non-Gaussian noise in CMB maps, such as thermal and kinematic Sunyaev-Zeldovich
effects.
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