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ABSTRACT
The origin of magnetism in white dwarfs is presently unknown. Knowing the underlying distribution of properties of magnetic
white dwarfs can constrain the cause of their strong magnetic fields; different sources correspond to different properties. While
mass, field strength, temperature, age, and composition have been explored, the rotation periods of magnetic white dwarfs have
not been measured en masse. In this project we aim to extract rotation periods for 842 magnetic white dwarfs using long-baseline
photometry from the Zwicky Transient Facility. In a test sample of 80 white dwarfs, we find that nearly 80% of them have
rotation periods below an hour, with the fastest ones rotating every few minutes.
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1 INTRODUCTION

About 10-20% of white dwarfs (WDs) exhibit magnetic fields (Fer-
rario et al. 2020, and references therein). Measured field strengths
extend as high as 109 G and as low as 103 G, though this range could
change with a detection method that was sensitive to lower field
strengths. The origins of these fields are presently unknown. There
are several proposed mechanisms by which a WD could develop a
field, including retaining a fossil field from the WD’s progenitor or
a dynamo triggered by crystallization, common envelope evolution,
or a WD-WD merger (Kawka 2018, 2020; Ferrario et al. 2020, and
references therein).

These different mechanisms should produce magnetic white
dwarfs (MWDs) with different properties. For example, MWDs
which were merger products should be more massive on average
than non-MWDs and be rapidly rotating. MWDs which experienced
a common envelope event should have a close binary companion.
MWDs which retained the magnetic field of their progenitors should
be slowly rotating due to the enhancement of core-envelope coupling
by the magnetic field close to the end of the star’s life.

It follows that the way to distinguish between these proposed for-
mation mechanisms is to aggregate the observed properties of MWDs
and compare to what is predicted by the different theories. This is
challenging in its own right due to a number of detection biases. For
MWDs, the presence and strength of a magnetic field is detected spec-
troscopically, either through Zeeman splitting (e.g., Kemic 1974) of
lines or spectropolarimetry (e.g., Landstreet & Bagnulo 2019). Zee-
man splitting of lines becomes resolvable at field strengths above
106 G, whereas the latter is sensitive down to about 103 G but only
works on bright sources. Furthermore, there are disparities between
the number of MWDs with very strong fields (B > 106 G) and strong

fields (103 < B < 106 G) because spectroscopic and spectropolari-
metric surveys are not carried out in equal proportion. Spectroscopic
surveys are far more common, thus the field strengths of detected
MWDs are biased to larger values.

There are also photometric biases. WDs decrease in size as they
increase in mass, which decreases their luminosity and makes them
more difficult to detect. Older WDs are also more difficult to detect
than younger WDs of equivalent mass because of drops in luminosity
caused by cooling.

Nevertheless, some initial trends are emerging from the more well-
characterized MWDs, namely that many of the most massive WDs
known are magnetic (Bagnulo & Landstreet 2022), less-massive
MWDs tend to be older (Bagnulo & Landstreet 2022), and the MWD
mass-distribution peaks at a value higher than the mass-distribution
of non-MWDs (Ferrario et al. 2020). More massive MWDs also tend
to have stronger fields.

However, rotation, despite being another way to distinguish be-
tween magnetic origins, has only been measured for a few MWDs
(Brinkworth et al. 2013; Ferrario et al. 2020). Yet it remains possi-
ble, as magnetism should produce variations on the surface of WDs
which would modulate their light curves. In this project we seek to
measure the rotation periods for as many MWDs as possible. Section
2 outlines our sample selection. In section 3 we discuss how to extract
and verify the rotation periods and section 4 presents the preliminary
period distribution for a subset of MWDs. Finally, we discuss the
next steps of this project in section 5 and conclude in section 6.
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2 SAMPLE SELECTION AND PERIODOGRAM
CONSTRUCTION

We take light curves from Data Release 17 of the Zwicky Transient
Facility (ZTF), a time-domain survey run at Palomar Observatory
(Masci et al. 2019). ZTF is magnitude limited and observes in both
Mould r and Sloan g bands, with a limiting magnitude of about 21 in
both bands (Smith et al. 2014). DR17 includes 5 years of data. There
are more than 1000 known MWDs (Dufour et al. 2017; Amorim et
al. 2023, and references therein), 883 of which are visible to ZTF.
Of the 883, 842 have ZTF light curves in at least one of the two
bands. In addition to the r and g light curves, we also combine to
the two light curves by normalizing to variations around 0. When
searching for periodic modulation, it is the fluctuations that matter,
not the magnitude values.

We also select a test sample of 80 WDs to verify the utility of
several techniques to assess the robustness of our period measure-
ments. These WDs were initially selected due to their high mass and
short rotation periods but spectroscopic follow-up revealed that they
all had magnetic fields. 77 of the 80 MWDs have forced-photometry
measurements as well, which yields less noisy data and more accurate
rotation period measurements.

ZTF tiles the entire northern sky (declination > -30◦) roughly every
two days but observes any given patch randomly in those two days,
meaning that there are not uniform spacings between observations.
This is an advantage because the recoverable periods are not Nyquist-
limited. Instead, the limiting period is one minute, which is twice the
exposure time of ZTF. As we expect at least some of the magnetic
white dwarfs to be very rapidly rotating, sensitivity to short periods
is critical.

The Lomb-Scargle periodogram (Lomb 1976; Scargle 1982; Van-
derPlas 2018) is able to approximate the Fourier transform of a set
of data with non-uniform sampling. For our initial tests, we use the
Lomb-Scargle periodogram implemented in Astropy due to its fast
computation time. To make the periodogram, we must supply both
the time-series data, including measurement errors, and a frequency
grid to check.

Selecting the proper grid is critical to extracting the proper period.
We choose a minimum frequency of the inverse of one half of the time
baseline and a maximum frequency of 720 cycles per day. We want to
sample at smaller frequency intervals than the minimum frequency,
so an oversampling factor of 5-10 is typically adopted. We choose a
frequency spacing of one fifth of the minimum frequency. The end
result is a few million frequencies checked per light curve. Since
the computational time for these periodograms scales as n log(n),
where n is the number of data points, running many periodograms
can quickly get computationally expensive.

3 PERIOD VERIFICATION

Ideally, if a WD is rotating and there are non-uniformities present
on the surface of the WD to impart a signal in the light curve, its
periodogram should be a delta function with a peak at a frequency of
the inverse of the period. But there are several reasons why this is not
the case. First, there is a baseline level of noise in the periodogram
because of the noise and measurement errors in the photometry.
Second, there are other sources of periodicity. The window function
imparts its own signal in the light curve. The fact that observations
are made daily imparts a one-day signal in the light curve. The
changing sky brightness from lunar phases imparts a near-monthly
signal. The Earth’s orbit imparts an annual signal. There could be

Figure 1. Phase-folded light curves for two MWDs in our sample, displaying
a light curve with very obvious periodic variation (top) and a light curve
where it is unclear whether there is a periodic signal (bottom). The lack of
obvious variation in the bottom panel implies that either the data are too noisy
or we extracted the incorrect period.

eclipses if the WD is in a binary. Third, the periodic signal may be
too weak compared to the noise, so that the periodogram just appears
to be noise with no strong signal. Lastly, the periodogram could have
recovered an integer multiple of the true period and not the period
itself.

Nevertheless, periodograms will always have a highest peak. We
just have to assess the validity of that peak. There are several things we
try. First, we phase-fold the light curves against the best-fit period. If
the light curve collapses into a coherent shape, then we have extracted
the correct period. If there is no obvious periodic modulation in the
phase folded-light curve, then we have likely extracted the incorrect
period. Some examples are shown in Figure 1.

The second assessment is the signal to noise, or peak significance.
Because definitions of noise vary, we calculate noise in two ways:
taking the root mean square (rms) of the entire periodogram and
taking a rolling average of the noise, in this case taking steps in
frequency of 5 cycles per day and averaging over a bin of 10 cycles per
day. For our targets the significance values are comparable between
the two, so we opt to just use the rms for the full sample. In our subset
of 80 MWDs, we calculate a broad range of significance values, 5
to 185, with a peak around 15. We select 15 as our lower limit for a
peak to be significant.

Figure 2 demonstrates why peak significance is a useful metric.
A periodogram will always have a frequency of maximum power,
whether it is a true periodic signal or just the strongest frequency
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Figure 2. Caption

in the noise. The top panel of Figure 2 gives an example of what
a true signal looks like. Not only is there a sharp peak, the power
in the signal is at least an order of magnitude higher than what the
average noise is. In the bottom panel, the highest peak does not stand
out from many other frequencies. This could be a real signal buried
in noisy data, or it is just that: noise. Peak significance gives us an
initial sense of how trustworthy the signal is.

It is possible that the period with the strongest signal in the peri-
odogram is not the true period but rather an integer multiple of the
true period, an alias. Figure 3 shows the periods measured in our
subset of 80, first months ago (the reported period) and now with a
longer baseline of ZTF data (recovered period). Most values lie on
the 1:1 line, yet of the periods which do not, the majority lie along an
aliased line. For the full sample, we do not know the periods ahead
of time, so we cannot construct a plot like Figure 3. However, we can
phase-fold the light curves around a few aliased periods and see if
the scatter reduces. Should the scatter drop, we will adopt the alias
as the true period.

The strongest metric we have for assessing the validity of the period
we recover is the false alarm probability, or the likelihood that the
period we find is not the true period. Traditionally this is measured
using a semi-analytic fit. However, this method breaks down at high
frequencies, returning non-sensical values like 10−100 when a more
appropriate value would be 0.01. Since we expect many of the MWDs
to be rapidly rotating, we need sensitivity at high frequencies.

Instead, we will use a manual proxy for the false alarm probability
in the form of Monte Carlo iterations. We will scramble the data
10,000 times, each time extracting a period and recording its signifi-

Figure 3. Reported versus recovered periods (in days) for a subset of 80
MWDs. Lines represent different integer multiples of the periods reported.
The majority of periods which do not lie on the 1:1 line are aliases.

cance. The false alarm probability is then the number of times we find
a peak in the scrambled data with comparable or greater significance
to the peak in the unscrambled data divided by 10,000. The higher
this value, the lower the confidence in the period extracted from the
original light curve.

Calculating 10,000 periodograms for 842 MWDs with millions of
frequencies sampled per target results in a large computational ex-
pense. To do this efficiently, we need GPUs, whose parallel process-
ing dramatically speeds up computation times. We use cuvarbase, a
python library capable of running on GPUs which calculates, among
other things, Lomb-Scargle periodograms. This enables us to run all
periodograms in a few days.

4 PRELIMINARY ROTATION PERIODS

We are presently working on verifying rotation periods for the full
sample of MWDs. However, we do have rotation periods extracted
from combined light curves for the subset of 80 we were using as our
test case. Figure 4 shows the distribution of their rotation periods.

There are several things to notice about this distribution. The first
is that the periods go from minutes to days, with nearly 80% of targets
having periods below a day. This is significant because the peak of
the non-MWD period distribution is 1-2 days (Hermes et al. 2017)
and the shortest period in that distribution was around an hour. For
these MWDs, half of the sample would not even fall on the plot in
Hermes et al. (2017). There is a significant bias in our distribution to
short periods. However, this subset was selected to contain rapidly
rotating MWDs, and it is possible that the final distribution of periods
does not skew as much to such short periods.

The second thing to notice is that there are two peaks, one at
one day and the other at 29.5 days. These are spurious signals, one
from periodicity imparted by observing only at night almost every
night and the other from the lunar phases; 29.5 days is the synodic
period of the moon. The MWDs whose light curves showed the
strongest modulation at these periods may still show variation at their
respective rotation periods. We would have to remove the spurious
period and then look again.

With these two false peaks removed, there is a more normal un-
derlying distribution with a peak around 40 minutes and an extended
tail up to periods of days. About 25% of the sample has a period be-
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Figure 4. The distribution of rotation periods of 80 MWDs. Note that the
x-axis is logarithmic and the labels have been replaced with minutes, hours,
and days to make the time axis more interpretable.

tween 3.4 and 10 minutes. These very rapid rotators may come from
WD-WD mergers, though it requires looking at trends with mass to
determine that. Another third of the sample has periods between 10
minutes and an hour and another quarter have periods between an
hour and a day. These large range in periods suggests that there are
different sources of the MWDs rotation, which implies different ori-
gins of their magnetism. We think the distribution of periods for the
full sample will provide good constraints on the origins of MWDs.

5 FUTURE WORK

We have verified that our period assessment techniques are adequate
and have the initial, unverified periods for our entire sample. The
remaining work includes checking for aliases and calculating the
false alarm probability for the entire sample. Once we are confident
in our period distribution, then we will look for trends against other
known properties of our entire MWD sample, including mass and
field strength. It is these trends which may be able to further constrain
the origins of magnetism in WDs.

6 CONCLUSIONS

Different origins of magnetism in WDs should produce MWDs with
different distributions of rotation periods. As such, measuring the
rotation periods for as many MWDs as possible can place broad
constraints on the origins of MWDs. Doing this requires careful
verification of the periods extracted, including an assessment of peak
significance, the presence of aliases as well as calculating a false
alarm probability, and the removal of spurious periods, such as those
at 1 and 29.5 days.

With the above assessments, we find a striking distribution of ro-
tation periods in an initial subset of 80 MWDs. Nearly 80% of the
sample rotates with periods shorter than a day, the typical rotation
period of a non-MWD (Hermes et al. 2017). The presence of larger
population of very rapidly rotating MWDs hints that WD-WD merg-
ers could be a significant channel for forming MWDs. While these
initial MWDs skew to shorter periods, we cannot assume that the dis-
tribution shape and the proportions of MWDs in each period range

will remain the same in the full sample. We also anticipate many
MWDs for which we cannot extract a rotation period due to noisy
data and weak light curve modulation. Nevertheless, rotation is a key
parameter in understanding the origin of magnetism in WDs.
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