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1 Introduction

The popularity of machine learning applications is rising in astrophysics and
astronomy as well as generally in sciences. The recent interest is partially due
to the ever increasing size of measurement data as well and recent advances in
algorithms and parallel computing resources such as graphics processing units.
The primary goal of supervised machine learning is to make predictions of pre-
viously unseen data points. In an idealized scenario, the training dataset is
indistinguishable from the unseen dataset, in other words both datasets come
from the same underlying data distribution. However, in many applications
such an ideal set-up can not be achieved, and the two datasets are generated in
a somewhat different fashion. For example the training dataset may come from
one region of the sky with a limited set of observing conditions which may not
perfectly match the observing conditions during predictions. In an other very
common machine learning scenario one trains on simulated data and applies
the trained machine learning model on observational data. We refer to datasets
generated by different processes as domains, and when the training data and the
data used during inference come from different domains we talk about domain
shift. Domain shift is generally undesired as it can result in reduced prediction
accuracy and biases predictions (Dominguez Sanchez et al., 2018).

Numerous approaches try to tackle the problem of different training and
predictions data domains, these efforts are usually referred to as domain adap-
tation (Ganin et al., 2016). In the general problem we have a labeled dataset in
domain A, and we want to predict the labels of unseen data points in domain B.

One successful approach to domain adaptation relies on transferring exam-
ples from domain A to domain B, while maintaining the key characteristics of



the transferred examples, especially those characteristics which correspond to
the labels. Such transferred examples then can be used to construct a labeled
training dataset in domain B, using the original labels of the transferred exam-
ples. Apart from domain adaptation for supervised classification or regression
tasks, one can also use these transferred examples for content creation, such as
transforming a doodle into a photo realistic image.

Very successful solutions exists to domain transfer, when paired realizations
of the same example are available in both domains (Isola et al., 2017). When
large number of such examples are available, domain adaptation is somewhat
trivial, as one can just use the images of these paired examples in domain B as a
labeled training and testing dataset. However, paired examples may be scarce,
hard to generate or even non-existent for numerous scenarios, and a more chal-
lenging question arises when one only has access to unpaired sets of examples
in both domains. A prime example for unpaired datasets in astrophysics is the
case when domain A consists of simulated data, and domain B consists of ob-
servations. The simulated data points have many known properties which we
may want to infer from observational data, such as galaxy magnitudes (Bou-
caud et al., 2019), therefore transferring between the domains is desirable. It
is also possible that one wants to use machine learning to assess the quality
of simulations with a model trained on observations (Huertas-Company et al.,
2019). Note that solving domain transfer via neural networks approach is com-
plementary to physics based realism, and could be most valuable when under-
lying connection between the domains is very complex or not completely known.

A challenging domain adaptation question for machine learning is astro-
physics is the morphological classification of galaxies in numerous surveys with
ever improving depth and resolution. The laborious visual inspection and clas-
sification of large numbers of galaxies for every single survey to generate a large
training datasets is not a very compelling solution. A notable dataset is the
GalaxyZoo (Lintott et al., 2008; Willett et al., 2013), where citizen scientist
projects classified more than 280000 galaxies using Sloan Digital Sky survey
images. A few other classified datasets exist for different surveys and classifica-
tion schemes, but the list is far from comprehensive. Dominguez Sanchez et al.
(2018) showed that a deep learning morphology classifier trained on the SDSS
images performs significantly worse on Dark Energy Survey (DES) galaxy im-
ages due to domain shift, even though the latter is a significantly deeper survey
with superior seeing. That study was able to improve the performance of the
classifier by further training it on a small set of visually classified sample of DES
images. A universal method which works across any surveys remains an elusive
goal for automated galaxy morphology classification.

In this present work we focus on domain transfer via generative adversarial
networks (GANs) (Goodfellow et al., 2014; Zhu et al., 2017). We consider do-
main adaptation for galaxy images of Illustris simulations to observations with
the SDSS and the DES survey. We also evaluate transfer between different sur-



veys with little overlap, SDSS and DES. The outline of the report is as follows.
In §2 we give a brief overview of domain transfer via generative adversarial
networks, and we present our methodology for the evaluation of the quality of
the generated examples. In §3 we present the datasets used for the study. In
84 we explore the use of GANs to generate examples in each domain to draw a
baseline of GAN capabilities for galaxy image generation. In §4.1 we explore the
use of cycle consisted GANs for domain trainser, and we report the results of
our domain transfer experiments. In §5 we draw the conclusions of our results,
and lay out future direction in S 6.

2 Domain transfer via cycle consistent genera-
tive adversarial networks

A successful approach to domain transfer relies on generative models, specifi-
cally generative adversarial networks. GANs are able to generate images in a
single domain, but the framework is very flexible and extending it with a sort
of cycle consistency one can use it for transferring examples between domain.
Here, we first review the basics on GANs and then the modifications needed for
domain transfer applications.

Deep convolutional generative adversarial networks revolutionized the field
of image generation in the last 5 years. The GAN approach relies on a large
sample of images and two competing neural networks, one attempts to gener-
ate realistic images from pure noise vectors as inputs, while the other neural
network is presented with a mix of real and generated images and it attempts
to classify the origin of these samples. The first neural network is called the
generator, the second one is called the discriminator. During training the dis-
criminator is trained to recognize the features which discriminate real data from
the generated examples. One can calculate the gradient of the discriminators
judgment with respect to the pixel values of generated images, to calculate the
changes needed to make the generated examples look slightly more realistic as
judged by the discriminator. These gradients can be used as the supervised sig-
nal to train the generator to make more realistic images. Therefore the neural
networks are not exactly adversarial, as the discriminator provides instructions
to teach the generator. The GAN framework turned out to be very fruitful,
and its evolution led to generators which are sometimes capable of producing
very compelling high resolution natural images (Karras et al., 2017; Brock et al.,
2018). A few studies explored generative adversarial network is astronomy, for
generating galaxy images (Ravanbakhsh et al., 2017; Fussell and Moews, 2019)
or weak lensing maps (Rodriguez et al., 2018; Mustafa et al., 2019).

However, GANs are notoriously hard to train, they suffer from multiple
pathologies which can disrupt training and they require a fine balance between
generator and the discriminator. A too sophisticated discriminator often pro-



duces useless gradients for a bad generator, as small changes on the input image
would not make the image any more realistic. In the more common failure case,
called mode collapse, the generator ends up producing a single example. Note
that even when successfully trained, the generators of GANs produce images
with relatively low diversity compared to natural images (Razavi et al., 2019).
Apparently it is hard to enforce large diversity of the generator in the GAN
framework.

A large variety of generative adversarial networks emerged in the last years,
which attempted to solve the shortcomings of the initial GAN framework (Rad-
ford et al., 2015; Salimans et al., 2016; Arjovsky et al., 2017). A major im-
provement on the stability of GAN training was achieved with replacing the
original binary cross-entropy objective of the discriminator with the Wasser-
stein distance based objective (Arjovsky et al., 2017). GANs are probabilistic
generative models which implicitly define a distribution via mapping a low di-
mensional diagonal Gaussian distribution to the pixel space with a parametric
function, the neural network. During training, examples of this distribution are
evaluated and the parameters are optimized to fool the discriminator network,
which is equivalent to minimizing the Kullback-Leibler divergence (Goodfellow
et al., 2014) between the true and the generated data distributions. However,
when two distributions are sufficiently different, minimizing the KL divergence
may not provide reasonable gradients to train the generator (Arjovsky et al.,
2017). Following this insight one can attempt to minimize the Wasserstein dis-
tance often called the earth-mover distance between two distributions, which is
the cost of the optimal transport plan between two distributions. The Wasser-
stein distance between two distributions is always defined and could provide
meaningful gradients to train the generator even when the generated distribu-
tion is quite different than the true data distribution. Naturally, the Wasserstein
distance is intractable but one can provide a reasonable approximation using
the Kantorovich-Rubinstein duality (Arjovsky et al., 2017).

W (Fa, Py) = sup Evp,[f(2)] = Eunp, [f(2)], (1)

where f are all the possible 1-Lipschitz functions, F denotes the expected value,
and P, 4 denote the true and the generated data distributions respectively. The
idea behind the Wasserstein GAN is to approximate the above mentioned f
function with the discriminator neural network. Restricting our discriminator
to be a 1-Lipschitz function we can estimate the Wasserstein distance between
the generated and the true data distribution by training the discriminator to
maximize the mean difference between its output on the real and the generated
examples. We attempt to approximate the supremum in the definition of the
Wasserstein distance by training the discriminator to near optimality by train-
ing it for multiple iterations between each training iteration of the generator.
A straightforward way to enforce a Lipschitz constraint on the discriminator is
to clip its weights to a certain interval, The weight clipping approach is sim-
ple and effective for small neural networks, however it can seriously hamper



the training of more complex neural networks, and therefore limit the complex-
ity of the usable architectures (Arjovsky et al., 2017). A 1-Lipschitz function
also has bounded gradients, and an improved training procedure of WGANs
tries to enforce the 1-Lipschitz constraint via penalizing the gradients of the
discriminator with respect to the image (Gulrajani et al., 2017). Wasserstein
GANs were shown to be much more stable, and easy to train than the usual
GAN formulation. WGAN with gradient penalty allows the training of com-
plex models such as residual networks with more than a 100 layers (Gulrajani
et al., 2017). The current state of the art GANs (Zhang et al., 2018; Brock
et al., 2018) strongly build on the idea of WGANS, and these solutions also
use 1-Lipschitz constrained neural networks achieved via spectral normalization
(Miyato et al., 2018), however the Wasserstein objective is often replaced with
the original GAN objective when performance is preferred over stability.

Apart from single domain image generation, GANs are successfully used for
paired image to image translation problems (Isola et al., 2017), due to their
ability to generate realistic samples with multi-modal distributions instead of
generating the mean of the distribution, such as generating a high resolution
flow of water from a low resolution input image in the context of super resolution
(Ledig et al., 2017). Domain transfer with unpaired sets of images can also be at-
tempted using a generalization of the GAN framework (Zhu et al., 2017). Given
two sets of images, one can use two neural networks to translate between the
domains, these network are the analogues of generators. In order to achieve re-
alistic examples in the target domains, one needs to add discriminator networks
to both domains, these networks judge the quality of the samples generated just
as in a standard single image GAN. However, an example of domain A could
in principle be transformed by the neural network to a very different example
in domain B, potentially changing the content we wanted to preserve during
the transfer. In order to enforce the transfer of the domain independent con-
tent of the image,we transform back the generated examples into their original
domain using the already mentioned generators and we penalize the difference
between the original images and their cycled versions. The loss function which
penalizes the deviations from the original image is called the cycle consistency
loss, it is generally an L1 loss. There is a large variety of frameworks built on
the idea of cycle consistency, the one described above is called CycleGAN (Zhu
et al., 2017), and it produces the most visually compelling transferred images
(Lee et al., 2018). Training the complete CycleGAN means optimizing the 6
different loss terms: the parameters of the two discriminators are optimized to
differentiate between real and fake examples, the parameters of the generators
are optimized to increase the difference of the discriminators output on fake
examples and the parameters of the generators are also optimized to reduce
the difference between the original images and the cycled samples. Note that
the original formulation of the cycleGAN uses the GAN objective, which we
replaced with the Wasserstein distance based objective to potentially improve
stability. For a WGAN based CycleGAN the minimized loss functions can be
written as follows.



Laise = E[D1(G1(z2)] — E[D1(21)] + E[D2(G2(21)] — E[D2(z2)]  (2)

Lgen = —Lagjsc + ‘GQ(Gl(IQ) - "EQ‘ + |(G1(G2(‘T1)) - l‘1|, (3)

where, G, D are generator and the discriminator functions and x1,z9 are
examples from the two domains. We modify the original WGAN implementation
! for our experiments and we follow the details of the implementation of the
cycleGAN from the original authors 2.

3 Data

We consider three domains in our experiments, Illustris, SDSS and DES galaxy
images. In each domain, the images were transformed with an asinh function
to reduce the dynamic range of the pixel values. We found it convenient to help
the visual inspection of the generated samples.

e In the first domain we use images of Illustris and IlustrisTNG galaxies
spatially down sampled by a factor of 2 to 64 x 64 pixel size.

e In the second domain we consider 64 x 64 pixel postage stamp cutouts of
SDSS DR7 main sample galaxies in the r band.

e In the third domain we consider 96 x 96 pixel postage stamp cutouts of
DES DRI1 galaxies resampled to 64 x 64 pixels. The DES galaxies are
selected to be brighter than 18 magnitudes, with a half light radius larger
than 10 pixels but smaller than 48 pixels.

4 Generating galaxy images using GANs

To establish a baseline for our domain transfer experiments, we first attempt
to generate samples in each domain using single domain GANs. Interestingly,
we find that one of the most advanced and stable GAN variant the WGAN
with gradient penalty is not able to generate realistic images, due to instability
during training. We find that the generators loss starts to wildly oscillate after
a few thousand or a few tens of thousands of iterations, and the visual qual-
ity of the samples degrade after that. We attempted to mitigate the behavior
by enlarging the coefficient of the gradient penalty with no success. Note that
the behavior is not due to the high noise in our observational data, as we also
experience the same behavior with noiseless simulated Illustris galaxies. Also,
note that using the same procedure we are able to conduct stable training on
natural images, such as MNIST digits re-scaled to 64 pixels or small imagenet

Thttps://github.com/igul222/improved_wgan_training
2https://github. com/junyanz/pytorch-CycleGAN-and-pix2pix
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Figure 1: The discriminator loss converges to 0 with a held out test set, demon-
strating that the generator is able to produce SDSS galaxies which are statisti-
cally indistinguishable from real ones. Similar loss curves are obtained for both
the Illustris and the DES domains.

images. A detailed investigation of the issue could yield interesting insights into
the stability of WGANs with gradient penalty, however, we leave it for future
work. Interestingly, we find that replacing the gradient penalty with weight clip-
ping leads to stable training and good quality samples, although this method is
regarded as inferior to gradient penalty. However, other methodologies such as
spectral normalization could potentially be better solutions to the problem.

We use a 128 dimensional latent space vector as input to the generators.
The spatial extent of the first layer is 4x4 units which grows two-fold via every
transposed convolution and finally reaches the 64x64 pixel size of the images.
The first layer has 512 filters which is reduced two-fold via every transposed
convolution and finally reaches the 64 filters before the final layer which out-
puts the generated galaxy image. The generator network consists of 4 blocks
of transposed convolutions followed by a batch normalization and a ReLLU. The
discriminator CNN is a mirrored version of the generator. We use a batch size
of 64 for each experiment.

After approximately 2 x 10° iterations the discriminators loss function con-
verges to 0 on held out test sets for each of the 3 datasets, indicating that the
discriminator is unable to tell apart generated and true examples. Note that
the discriminators are relatively simple neural networks, and their weights are
clipped, therefore their discrimination ability is limited. It could be useful to
train another more powerful complex neural network, without weight clipping
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Figure 2: The distribution of true and WGAN generated Illustris galaxies cover
the same space when their representation in the last hidden layer of the dis-
criminator is embedded in two dimensions via UMAP.

to evaluate more thoroughly whether the generated examples are truly indistin-
guishable from the real ones.

As another test we also embedded the true and the generated galaxy samples
with UMAP into two dimensions using both the pixel space and the representa-
tions of the last hidden layer of the discriminator. The generated and the true
samples have roughly the same distribution in the two dimensional embedded
space. Note that this is hardly surprising, because if they would have different
distributions in the two dimensional embedding, the discriminator could proba-
bly tell them apart from each other. Nevertheless these tests further strengthen
the point that it is indeed hard to discriminate between the true and the gen-
erated samples. We show the representation of the last hidden layer embedded
with UMAP for the Illustris galaxies on Fig 2.

We show a truly random selection of real and generated galaxies for each
dataset on Fig 3, Fig 4 and 5. The examples generally look visually satisfactory.



Figure 3: True (left) and WGAN generated (right) galaxy images in the Illustris
simulation domain.

Figure 4: True (left) and WGAN generated (right) galaxy images in the SDSS
observation domain.

In summary, we established that we we are able to generate reasonably
satisfactory galaxy images using GANs in any of the three domains used.

4.1 Transferring galaxy images between domains

We train cycleGANs to transfer between the following pairs of domains:

e simulated noiseless Illustris galaxies and SDSS observations



Figure 5: True (left) and WGAN generated (right) galaxy images in the DES
observation domain.

e simulated noiseless Illustris galaxies and DES observations

e SDSS and DES observations

Interestingly, even after long training with a million iterations, we find that
the output of the discriminator is significantly different for the true samples and
the generated, transferred examples 6. In other words, our transferred images
do not fool the discriminator, unlike in the single image GAN scenario. We note
that this is not special to the domains between the Illustris and SDSS, but we
obtain similar results for each of our domain transfer experiments. In the light of
the results of our single GAN experiments the failure to fool the discriminators
here is somewhat surprising. The single GAN results show that a convolutional
neural network is able to reproduce each domain sufficiently using noise vectors
as inputs, and apparently the restrictions in the cycleGAN framework pose too
strong restrictions on the generator.

We also evaluated the embedded representations of the generated and the
true samples. We find that our SDSS dataset has a large number of pipeline
errors, resulting in off-center or non-existing objects on the images, which are
missing from the other two datasets. The cycleGAN apparently was not able
to handle these objects, which may partially explain why the the discriminators
are not completely fooled. The experiments with SDSS data need to be reeval-
uated with an improved dataset which is free of the above mentioned erroneous
objects. Interestingly while the discriminators of the Illustris-DES transfer are
not fooled by the generated examples, the embedded representations of the last
hidden layer of the respective discriminators show no difference between the
true and the generated samples 7. These results are promising, and we have to
further investigate what attributes allow the distinguish between the true and

10
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Figure 6: The discriminators are not fooled during transfer. The discriminator
loss curve plotted for the SDSS domain during Hlustris-SDSS transfer. The loss
functions do not reach 0 during training, which means that the discriminator
networks are capable of telling apart true and generated samples. Similar loss
curves are obtained for every single domain or experiment during transfer.

the generated samples.

In what follows, we discuss the factors which possibly limit the ability of
our generator to produce samples which are indistinguishable from the true ex-
amples. First, we use a relatively simple neural network for transfer with 2
convolutional layers with spatial down-sampling by a factor of two and 2 trans-
posed convolutions for up-sampling. However the neural networks used in the
single GAN scenario are not much more complex, as they consist of 4 transposed
convolutional layers for the generator. The discriminators in the two setups are
identical. A large difference between the single GAN and the cycleGAN gen-
erators is the number of spatial hierarchies used. In the early experiments,
we attempted to train a cycleGAN with more down-sampling and up-sampling
transformations, but we found found that the produced transferred images bear
little resemblance to the inputs. Note that given large enough, freedom the
cycleGAN may be able to decode our original images into the new domain
without keeping the structure we wish to transfer, and the original cycleGAN
implementations also do not use more than 2 down-sampled spatial resolution
feature maps. However, due to our limited time and computing resources we
have not conducted an exhaustive neural network architecture search, and we
can not rule our that a more complex neural network could be capable of pro-
ducing realistic transferred examples.

11
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Figure 7: The distribution of true and generated DES galaxies cover the same
space when their representation in the last hidden layer of the discriminator is
embedded in two dimensions via UMAP. The DES galaxies are generated via a
cycleGAN from noiseless Illustris galaxies.

Another potential problem may arise when there are large differences be-
tween the datasets we want to transfer between. Zhu et al. (2017) also note
that only very close domains distances can be bridged with a cycleGAN, trans-
formations which only need to make small changes on the image. For example
they are unable to transfer between images of cat and dogs, as the necessary
deformations on the images are too large. The datasets used here have notable
differences: the Illustris galaxies are noiseless, while observations have pixel
noise. Moreover each dataset has varying degrees of visible background objects
and companions.

We show transferred examples produced at the end of the training sched-
ule together with their original counterparts on Fig 8, Fig 9, Fig 10. Visual
inspection of the samples show that the training was relatively successful and
the transferred examples look similar to the target domains while maintaining
some of the morphological properties of the source galaxies. However, closer
inspection reveals some noise artifacts, which may be eradicated with different

12



Figure 8: True (left) and generated (right) examples in the context of transfer
between Illustris (top) and SDSS (bottom) galaxies.

neural network architectures or different GAN frameworks such as spectral nor-
malization. A peculiar source of bias is also apparent, namely bright galaxies
are often transformed into noisy galaxies, potentially due to the fact there is
no noise injected into the generator and transforming signal into noise is a po-
tentially easy solution to generating noisy samples. A potential remedy to this
problem could be the injection of noise into the generators.

The DES and the SDSS surveys have a small overlapping region around the
celestial equator, where we can find paired examples. We evaluated the trained
cycleGAN on these examples, and we show one interesting galaxy where spiral
arms are also resolved in SDSS on Fig 11. Naturally, the counterfeit example in
the DES domain which is the SDSS image transferred to the DES domain does
not reproduce the the detailed structure of the galaxy, which is only resolved in
DES. Note that the goal of the transfer is not the accurate reproduction of single
galaxies, as that is practically impossible when starting with an unresolved and
noisy image. However, the generated DES examples not only does not repro-
duce the exact realization of the galaxy in DES, but lacks any detailed structure.

13



Figure 9: True (left) and generated (right) examples in the context of transfer
between Illustris (top) and DES (bottom) galaxies.

We find that the lack of detailed spiral structure is a general problem of our
GANSs both in single domains and transfers. More complex approaches which
enlarge the field of view of neuron such as self-attention may be able to mitigate
the problem of lacking structure. We also find that block like noise artifacts
appear on the generated example, which may be due to the relatively simple
architecture, with up-sampling staged very close to the final image. Changes in
the networks architecture may be able to mitigate this problem. The generated
SDSS image of the galaxy looks like a fairly realistic realization, of the galaxy
as seen in SDSS. Reassuringly the structure of the galaxy remains similar, and
the class of the galaxy is not changed during transfer.

5 Discussion
We explored cycle consistent generative adversarial networks to transfer astro-

nomical objects between different domains, namely the Illustris simulations,
the Sloan Digital Sky survey and the Dark Energy Survey. Acquiring labeled

14



Figure 10: True (left) and generated (right) examples in the context of transfer
between SDSS (top) and DES (bottom) galaxies. The galaxies on right are
transferred version of the galaxies on the left.

training data for machine learning tools is either laborious or sometimes simply
not possible in observations. Transferring labeled data between different do-
mains enables the construction of training datasets in domains where no such
labeled training data is available. When transferring between simulations and
observations cycleGANs could be used to paint realism on simulated data as
an alternative to hand crafted realism processes. Transferring between obser-
vations could adjust the instrumental and atmospheric effects between surveys.
Note that the use cases presented here could in principle be also realized with
meticulous reconstruction of the underlying physical processes, however a simple
shortcut solution with machine learning has obvious benefits. When physical
transfer codes are available, comparing the two solutions could lead to interest-
ing insights about the transfer process.

We demonstrated that generative adversarial networks are capable of gen-

erating realistic samples of galaxy images in both simulation and observation
domains. The quality of the samples is high enough to fool a simple discrim-

15
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Figure 11: True (left) and generated (right) example in the context of transfer
between SDSS (top) and DES (bottom) galaxies for a galaxy which is both
observed in SDSS and DES.

inator network, however complex CNNs could be trained to further validate
whether the generated and true samples are truly indistinguishable. After qual-
itative visual inspection of the samples we also find it hard or impossible to tell
apart generated and true galaxies. One notable exception is that large spiral
galaxies with well resolved spiral arms are missing from our generated samples,
possibly showing the general phenomenon of mode dropping often encountered
when generating data with GANs. Further improvements of GANs which are
able to produce such examples may be desirable for certain purposes.

We demonstrate that it is indeed possible to transfer galaxy images with

16



cycleGANs between different domains such as simulations or different observa-
tions. Qualitative evaluation of the quality of transferred examples using the
overlapping footprint of the SDSS and the DES surveys reveals promising re-
sults. Interestingly the discriminator networks are not completely fooled by our
generated samples, but this may be simply due to the intrinsic differences be-
tween the datasets.

6 Future work

The project is work in progress, and we attempt to summarize the potential
future directions here. The most promising and straightforward question we
identified is the transfer from SDSS galaxy images to DES galaxy images, with
the goal of building a morphological classifier of DES galaxies, and we will
further explore this particular question. Note that the DES survey can be
replaced with any single survey in the proposed setup. The SDSS dataset we
used is based on the DR7 data release, and we are going to move on to use
both imaging and catalog data from DR12 to improve both the catalog and the
imaging data. The differences between the datasets may limit the efficiency of
the transfer, and we will attempt to make the task easier by trying to match
the properties of the datasets e.g.: transforming the intensities or pixel scale of
the datasets. Currently we were not able to completely fool the discriminators,
and in order to understand the flaws of our generated examples, we will attempt
to use attribution methods such as layer wise relevance propagation (LRP) of
integrated gradients (??) to highlight regions, and features of the images which
allow the discriminators to tell apart true and generated samples. If we can
better understand the problems of the generated samples, we may be able to
refine the framework to produce higher quality counterfeit samples. There are
newer and more powerful GAN frameworks which could potentially improve
the quality of the produced examples, namely spectral normalization and self
attention (Miyato et al., 2018; Zhang et al., 2018). Finally, a training dataset
from labeled galaxies generated by the transfer needs to be created to ultimately
evaluate the merit of the domain transfer approach.
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