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I. INTRODUCTION

The general relativity (GR) has passed a multitude
of tests over the past years [M. Will et al. 2014], but it
has never been matched up against a strong gravitational
field, like that of a black hole. The detection of grav-
itational waves (GWs) emitted from binary black hole
merger [B. P. Abbott et al. 2016 & 2017] gives us access
to a genuinely strong gravitational field regime. In or-
der to test the GR model beyond the currently accessible
scale, we will focus on quantifying the deviations between
the observed waveform (hobs) and the waveformsmodeled
by GR (hGR). Quantifying such deviations is one of the
major challenges in GW data analysis.
The aim of the project is to find a way of charac-

terizing/parameterizing deviations from GR waveforms
that makes little prior assumptions about the nature
of the deviation. The approach can thus be viewed as
data orientated rather than testing a particular straw-
man model. The numerical method we use to character-
izing/parameterizing deviations is based on spline inter-
polation in which the estimated signal is a cubic spline
function.
The splines employed to characterize the deviation pro-

vide a uniform way of describing GR departures rather
than fitting distinct models to the inspiral and ringdown
parts of the waveform. Provided the template basis de-
scribing the GR waveform is accurate enough this should
provide a good way of describing departures at the tran-
sition from inspiral to merger.

II. DESCRIPTION OF THE METHOD USED TO

CALIBRATION ERRORS

A. Waveform Representation

When a gravitational wave with a frequency-domain
waveform hGR(f) enters to the detector, we assume it
records a data stream (again in the frequency domain)
that is an additive combination of a waveform and noise:

d(f) = hobs(f) + n(f). (1)

Because the detector is not perfectly calibrated, how-
ever, there are frequency-dependent amplitude and phase
departures in hobs with respect to hGR:

hobs(f) = hGR(f) [1 + δA(f)] exp [iδφ(f)] . (2)

Despite those departures are small, have the poten-
tial to impact in the measurement of all parameters of
the source (masses, spins, distance, sky location, etc.).
Therefore, a careful analysis is mandatory to evaluate
the effect of deviations. Under the assumption of δA(f)
and δφ(f) oscillates smoothly in frequency, they can be
modeled by a spline function.

B. Spline Model

A spline function is a piecewise polynomial interpola-
tion that obeys smoothness conditions at the nodal points
where the pieces connect. In the following, we use the
case of cubic splines defined by a 15 fixed nodal points
confined to a finite frequency interval. Formally these
departures can be written as

δA(f) = p3(f ; {fi, δAi}), (3)

δφ(f) = p3(f ; {fi, δφi}), (4)

where p3 is a cubic spline polynomial, the fi are the
nodes of the polynomial in frequency, and δAi and δφi

are the values of the spline at those nodal points. The pa-
rameters of this model are then the δAi and the δφi. Each
detector will have independent calibration parameters in
a multi-detector analysis. As [S. Vitale et al. 2012] did
it, we will choose nodal points equally spaced in the logf ,
this choice constrains the correlation length of the cali-
bration errors in frequency space.
Because the calibration errors are expected to be small,

it seems reasonable to place a Gaussian prior on the cal-
ibration error parameters

p(δAi) = N(0, σA), (5)

p(δφi) = N(0, σφ), (6)

where σA and σφ characterize our expected uncertainty
about the magnitude of the calibration error at these
frequencies. These parameters can then be fit and the
corresponding calibration errors marginalized over in a
run of one of the LALInference samplers.
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FIG. 1: Injected modified δφ.
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FIG. 2: Injected modified δA.

We would expect departures from GR to occur in re-
gions other than the limits already imposed by Binary
pulsar observations. Alternately viewed we expect GR
to hold in a manner similar to the way it does in binary
pulsar systems in the early inspiral parts of the wave-
form, placing strict constraints on the departure of the
amplitude spline in this region, basically restricting it to
having an average value close to zero, thus removing the
amplitude degeneracy.

III. PRELIMINARY RESULTS

In order to test the spline, we take the range of fre-
quencies to be [30, 250] for an injected artificial modified
GR signal, the reason why this election was made is be-
cause we want to reflect the GW150914 bandwidth. The
modified GR signal was not based on a physical model,
but invented to mimic spontaneous scalarization. For
the phase δφ, we added an abrupt change centered at
f = 102Hz, with a width of ∼ 1Hz. This change is of
60 radians. The amplitude temporarily dropped by 5%.
In Figs 1 and 2 we show the injected modified phase and
amplitude, respectively.
These modifications in the amplitude and the phase

generate a modified signal, which we added Gaussian

FIG. 3: The posterior probability of amplitude and phase of
the modified waveform. In a confidence interval of 90%.

FIG. 4: The posterior probability of amplitude and phase
of the waveform predicted by GR. In a confidence interval of
90%.

noise, this new signal with noise was analyzed by our
model and later was compared with a signal predicted
by the GR model. Fig. 3 shows the amplitude and phase
of the modified signal evaluated at the nodal in a confi-
dence interval of 90%, in this cases the uncertainties in
amplitude and phase are σA = 5% and σφ = 60 degrades,
respectively. In order to remove the degeneracy in ampli-
tude we fixed two nodal points, without loss of generality,
we fixed these two nodal points around 100Hz. In this
figure, we can see, clearly, deviation of the GR model in
the amplitude and phase of the modified signal.
In a similar way, Fig. 4 shows the amplitude and phase

of the signal predicted by GR evaluated at the nodal in a
confidence interval of 90%, the uncertainties in amplitude
and phase were the same of the modified signal. Also, we
fixed the same two nodal point like in the modified sig-
nal. In this case, the phase does not show departures of
GR model, as it was expected. However, in the ampli-
tude there is a point, after 250Hz, that departures from
the GR model, this is undoubtedly a reason for detailed
analysis to determine the cause of such departure.
In order to see how these deviations from the GRmodel
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FIG. 5: The posterior probability of chirp mass with the mod-
ification to GR present.

FIG. 6: The posterior probability of chirp mass without the
modification to GR present.

affect the measurements of the observable quantities, we
show the recovered chirp mass distribution by the two
signals mentioned above. In Fig. 5, we show the posterior
probability of chirp mass of the modified signal, where
there is a departure of ∼ 4 solar masses.
Fig. 5 shows the posterior probability of chirp mass of

the signal modeled by GR. The expected value is within
the probability density.

IV. FINAL COMMENTS

We have presented a numerical algorithm based on
splines to find a way of characterizing/parameterizing de-
viations from GR waveforms. In order to carry this out,
we injected two signals with a Gaussian noise present
them. On the one hand, the amplitude and phase of one
of these signals was modified by a spontaneous scalariza-
tion, this signal showed deviations from the GR model.
On the other hand, one of the injected signals was a pre-
dicted signal by GR. The phase of this signal shows zero
deviation from GR, while the amplitude did it. A careful
study is needed to determine the causes of this deviation.
As well as: (i) determine in what way these deviations
could be confused with calibration errors, (ii) implement
another modified waveform models, and (iii) improve the
way to remove the amplitude degeneracy.
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