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ABSTRACT

The problem of anomaly detection in astronomical surveys is becoming increasingly
important as data sets grow in size. Unsupervised learning presents an approach for identifying
outliers in data sets without prior labelling of data or specification of the outliers. We present
the results of an anomaly detection method using generative adversarial networks (GANs)
on optical galaxy images in the Hyper Suprime-Cam (HSC) survey. We find that the GAN
is able to generate realistic HSC-like galaxies and learn the distribution of the training data.
We identify images which are less well-represented in the GAN’s latent space, and thus are
more anomalous with respect to the rest of the data. This approach identifies ∼0.4% of the
objects as anomalies at the 3σ level. We further characterize these anomalies by type using
dimensionality reduction and clustering with mixture models on the residuals of the real and
GAN-reconstructed images. Our initial results include the identification of multiple galaxy
mergers and tidal features, and objects indicating AGN activity or central starbursts. We
also identify a significant amount of “bad images”, due to pipeline errors or bad detections,
which can be used to improve the HSC pipeline. We conclude that GANs are a productive
method for identifying anomalies in galaxy surveys. We will release a catalog of identified
anomalous objects in the HSC survey in upcoming work. The code and catalog are available
at github.com/kstoreyf/anomalies-GAN-HSC.

1 INTRODUCTION

Many discoveries in astronomy have been made by identifying un-
expected outliers in collected data (e.g. Cardamone et al. 2009,
Massey et al. 2019). These outliers, also referred to as anomalies
or novelties, are data points that lie outside of the normal distribu-
tion of data. In the astronomy context, we are interested in finding
unknown classes of objects, objects belonging to rare classes, and
individual objects of known type with anomalous properties. As
data sets increase in size, automated methods for detecting these
outliers are becoming necessary. The Sloan Digital Sky Survey
(SDSS) surveyed one third of the sky and observed over 1 billion
cataloged objects (York et al. 2000). In the near future, the Large
Synoptic Survey Telescope (LSST) will observe 40 billion objects
(Ivezic et al. 2018). These present opportunities for discovery in
their massive data sets, as well as the need for new, automated
methods to filter the data and identify anomalies.

Outlier identification has been an area of study since as early as
the 19th century (Edgeworth 1887). More recent work in anomaly
detection for astronomy has applied a range of statistical and compu-
tational techniques. A nearest neighbors approach, often combined
with a dimensionality reduction step, has been used for outlier de-
tection in and cross-matched astronomical data sets more generally
(Henrion et al. 2013). Applications often target specific objects,

such as using Bayesian model selection to select rare high-redshift
quasars from a star-dominated population (Mortlock et al. 2012).
Another approach is Principal Component Analysis (PCA) to iden-
tify distinguishing features, which has been applied to SDSS and
2MASS flux and surface brightness data (Dutta et al. 2007).

Machine learning methods are being rapidly developed as ap-
proaches to anomaly detection in astronomy and other fields. A
review of anomaly detection methods and applications using deep
learning is presented in Chalapathy&Chawla (2019). Unsupervised
learning lends itself to this problem, as it allows for outlier identifi-
cation without expert labelling of training data or introducing biases
based on expected outliers. Baron & Poznanski (2017) use random
forests to find outliers in Sloan Digital Sky Survey (SDSS) spectro-
scopic data. Solarz et al. (2017) apply support vector machines to
find anomalies in the Wide-field Infrared Survey Explorer (WISE)
survey. Beyond galaxy surveys, deep learning has been applied to
anomaly detection problems in supernovae data (Pruzhinskaya et al.
2019).

Deep generative models present another class of approaches
to anomaly detection. These have a natural application to identi-
fying outliers, as they are able to model complex distributions of
high-dimensional data. One model class is generative adversarial
networks (GANs), proposed by Goodfellow et al. (2014). They con-
sist of a convolutional network known as a “discriminator” and a
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deconvolutional network known as a “generator.” The role of the
generator is to learn a model of the training data set, and gener-
ate realistic images follow the same distribution. The discriminator
is tasked with determining whether an image is real, i.e. from the
training set, or fake, i.e. from the generator. The generator will be
able to better model images that are more common in the training
set, and will perform worse on images that are more anomalous
relative to the rest of the data. Similarly, the discriminator learns to
identify real data, and thus contains information about whether an
object is realistic or anomalous.

GANs were first applied to anomaly detection by Schlegl et al.
(2017), in the context of medical imaging. They demonstrate that
a GAN trained on normal images can then be used to identify ab-
normal images. Zenati et al. (2018) show that training an encoder
simultaneously with the GAN improves testing efficiency, and they
demonstrate their performance on outlier detection tasks on a range
of high-dimensional data. GANs have also been used to detect out-
liers in time-series data (Li et al. 2018). Di Mattia et al. (2019)
present a survey of the application of GANs to anomaly detection
and perform empirical validation of the models.

The Hyper Suprime-Cam Subaru Strategic Program (HSC-
SSP) is a natural data set for anomaly detection applications
Miyazaki et al. (2018). It is a wide-field optical survey with very
good seeing and a deep magnitude limit, containing nearly half a
billion primary objects. Many interesting objects have already been
identified in HSC, including interacting galaxies (Goulding et al.
2017) and gravitationally lensed objects (Wong et al. 2018). We
are interested in finding more of these types of objects, as well as
potentially extreme color galaxies, galaxies with extreme activity,
rare quasars, and other scientifically interesting objects. In addition
to these, anomaly detection will be useful for filtering out instru-
mentation and pipeline errors in HSC.

In this work, we train a generative adversarial network to iden-
tify anomalous objects in a subsample of HSC images, of just under
one million objects. We then characterize the anomalous images, to
distinguish bad detections from interesting objects, and further clas-
sify these objects of interest. Our final work will present a complete
catalog of anomalies in our HSC sample. To our knowledge, this is
the first application of GANs to anomaly detection in astronomical
data.

2 DATA

2.1 Hyper Suprime-Cam Survey

We use data from the Hyper Suprime-Cam Subaru Strategic Pro-
gram. The wide-field optical survey is imaged with the Subaru Tele-
scope and has been ongoing since March 2014. The second public
data release (PDR2, Aihara et al. 2014) contains over 430 million
primary objects in the wide field covering 1114 deg2. The area ob-
served in full-depth full-color covers 305 deg2. These objects are
observed in 5 broad-band filters, grizy, down to a magnitude limit
of ∼26.

2.2 Selection of Sample

We choose a magnitude slice for our analysis, with 20.0 < i < 20.5.
This allows for a more consistent sample in object size. We exclude
objects flagged as having significant issues by the pipeline. These
are, in any band: cosmic rays crossing the center pixel, saturated cen-
ter pixel, interpolated center pixel, source at edge of survey volume,

Figure 1. A subsample of the data sample used for training the GAN and
identifying anomalies.

failed flux fit. The full query, including these cuts and the informa-
tion we retain about each sample, is reproduced in appendix A.

We generate cutouts of 96x96 pixels around each image, with
a pixel scale of 0.167 arcseconds; the cutouts are about 15x15
arcseconds or 3 times the average effective radius in side length. This
captures the entirety of most objects while still being a reasonable
size for training the network, without the need for downsampling.
We use the gri-bands to get 3-color images. This results in a sample
of 942,782 objects, consisting of ∼70% extended objects and ∼30%
compact objects. A subsample from our final training data selection
is shown in Figure 1.

We perform some preprocessing on the images before feeding
them to the neural network. We normalize the pixel values to avoid
issues due to the raw data range spanning multiple orders of mag-
nitude. We convert the flux values to RGB values using the method
of Lupton (Lupton et al. 2003), and then convert these to between
0 and 1.

3 METHODS

3.1 GAN Architecture and Training

We construct a generative adversarial network based on the imple-
mentation by Gulrajani et al. (2017). The basic setup is a generator
and a discriminator with separate loss functions, which compete
against each other in a minimax game. The discriminator learns to
distinguish real images from those generated by the generator. The
generator, in turn, learns how realistic its generated images are based
on feedback from the discriminator. The loss function to optimize
is then

min
G

max
D

L(D,G) = Ex∼preal(x)[logD(x)] +

Ez∼platent(z)[log(1 − D(G(z)))] (1)

GANs are notorious for instability in training; balancing the

MNRAS 000, 1–?? (2019)



Anomalies in Hyper Suprime-Cam Images 3

Figure 2. A random sample of images generated by the GAN, each starting
from random noise.

generator and discriminator losses is nontrivial. One improvement
to this loss function to use the Wasserstein distance to compute the
distance between probability distributions (Arjovsky et al. 2017).
This is a more meaningful distance measure and is smooth even
when the distributions are disjoint. Another issue is caused by the
gradient vanishing when the discriminator is perfect, so the loss
function cannot continue to be updated. One approach to solve this
is by applying a ”gradient penalty” (GP) to penalize the loss. These
two improvements are known as a WGAN-GP, and we use this
construction in our GAN. The implementation is in tensorflow
and python.

We construct our generator to have a depth of 4 with a latent
space of dimension 128, and a sigmoid activation function. The
discriminator also has a depth of 4. We train the GAN in batches of
32 images, with 5 discriminator updates per generator update. After
around 10,000 training iterations, the generator and discriminator
losses stabilize and no longer improve. We thus select the generator
and discriminator models at 10,000 training iterations. A random
sample of images generated with this GAN, starting from random
noise, is shown in Figure 2. We can see that the GAN is able to
generate realistic images for less extended objects. However, it also
generates diffuse-looking sources that are not realistic models of
extended sources.

3.2 Anomaly Scores

We apply to generator to generate its best reconstruction of each
image in the sample. To do this, we assign each attempted recon-
struction a generator score and a discriminator score. The generator
score sgen is the mean square error of the difference between the
pixels of the two images, summed over all bands. The discriminator
also provides a way of measuring how anomalous an image is, as
more anomalous images will more likely be marked as ”fake” by the
discriminator. To capture this, we output the image representation
after the penultimate layer of the discriminator. The mean square

Figure 3.Objects and their GAN reconstructions. Top row is the real image,
middle row is the reconstruction, and bottom row is the residual; each column
is labelled by anomaly score. Left panel: A random sample of objects. Right
panel: The most anomalous objects in the sample.

error between this representation for the real and generated image
is the discriminator score, sdisc. The total anomaly score stotal is a
weighted average of these,

stotal = (1 − λ) · sgen + λ · sdisc (2)

where λ is a weighting hyperparameter which we tune.
The generator attempts to generate a reconstruction with the

minimal anomaly score. To speed up this process, we first train an
encoder for the whole training sample. This convolutional network
makes a first approximation of the 128-dimensional latent-space
vector of the generator. We then perform a basic optimization for
each image individually to reach a lower anomaly score, optimizing
for 10 iterations. We note that the score converges before 10 for
most images. The score after this process for each image is assigned
as its final anomaly score. The scores are entirely relative and are
meaningful only with respect to the rest of the sample. The result
of this process is shown in Figure 3.

3.3 Classification of Anomalies

We expect the residual images, the absolute difference between
the real and reconstructed images, to contain information about
why the GAN marked an object as anomalous. We can project
the residual images into a 2-dimensional representation using a
UniformManifold Approximation and Projection (UMAP,McInnes
et al. 2018). This organizes data by similarity for visualization and
clustering purposes.

For the mapped quantities, we next perform clustering using
a Gaussian mixture model (GMM). The GMM, which is similar to
k-means clustering but can account for the variance of the data and
performs soft classification, assigns the vectors to clusters based
on their distance in the space of the UMAP. We can then visually
inspect the clusters and determine which contain interesting objects.
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Figure 4. The distribution of anomaly scores for the ∼940,000 objects in
our sample. The solid line shows the sample mean; the dashed lines show
1σ , 2σ , and 3σ away from the mean. There are 80 objects with scores
greater than 4000 not shown on the figure for clarity.

4 RESULTS & DISCUSSION

4.1 Anomaly Score Distribution

We compute anomaly scores for each of the ∼940,000 objects in
our sample; their distribution is shown in Figure 4. Higher anomaly
scores indicate more anomalous objects, while lower scores indicate
objects that are more well-modeled by the GAN. The distribution
is skewed towards higher scores, which is expected: most typical
objects are reconstructed well by the GAN so have similar scores,
while there are more ways to be anomalous than to be typical,
resulting in a wider range of scores. There are 18 objects with
extremely high anomaly scores, between 4,000 and 11,000, not
shown on the figure for clarity. There are 9,648 objects with scores
greater than 3σ above the mean, just over 1% of the sample; we
take these as our ”anomalies” and perform further classification on
this sample.

We can understand the anomaly scores by comparing the as-
signed generator and discriminator scores. This is shown in Figure
5. As expected, objects with a higher generator score tend to have
a higher discriminator score. We also see that there are populations
of objects with one score relatively higher than the other, as well as
clusters in this space. This may indicate particular classes of object,
for example objects that the generator reproduces well in pixel space
but contains anomalous features or patterns in the latent space of the
discriminator. We plan to explore these regions in upcoming work.

4.2 UMAP Clustering

We apply the UMAP algorithm to the data to visualize it in a
2-dimensional space. We perform the embedding on the residual
pixels of each image, as these contain information about the anoma-
lous features of an image. Figure 6 shows the map for a random
100,000-object subsample (due to memory limitations, to be ex-
panded in upcoming work), as well as the map for just the 3σ
anomalies. We see significant structure in both embeddings. The
higher anomaly score objects cluster in the center of the 100,000-
object sample, showing that the residual pixels contain information
about how anomalous the images are. The UMAP of 3σ anomalies

Figure 5. Discriminator vs. generator scores, based on the residuals from
each network, for our sample. Objects with a generator score over 4000 are
not shown.

shows significant clustering, with the very highest-scoring anoma-
lies located in a few regions. There are also clusters offset from the
majority of the objects, which contain a mix of anomaly scores but
may contain objects of particular interest.

We can perform an initial exploration of this space using a
GMM. We apply the GMM to the 2-dimensional mapping of each
object in the 3σ anomaly sample, with 10 clusters. This choice
of 10 is arbitrary, chosen to explore the data space in some level
of detail; future work will refine this approach. The objects are
color-coded by cluster assignment in Figure 7. We can then look
at the images, as well as their GAN reconstruction and residual, in
each cluster; a random subsample of objects from each cluster is
shown in Figure 8. The clusters are visually distinct, most obviously
by color. There are also patterns in the residuals with companion
objects and extended objects that are not well-captured by the GAN.
This shows that clustering of embedded-space residuals is providing
useful information on anomaly type; we plan on performing more
fine-grained clustering and classification with this technique.

We note that residual image pixel space on which we applied
the UMAP is very high-dimensional, and may contain information
less relevant to the anomalies. To reduce the dimensionality of the
data and isolate the relevant information, we trained a convolutional
autoencoder to map each residual image to a 64-dimensional vector.
We then applied a UMAP to this vector. However, this approach
did not, on initial inspection, produce better results than mapping
directly on the residual pixels. We plan to return to this autoencoder
approach in future work.

4.3 Correlation with HSC Catalog Information

We can compare the results of our anomaly detection process with
the HSC catalog data. This acts as both a validation step, and a way
to further cluster the data. We first look at the extendedness of the
object, measured by its effective radius, which is computed from
the moments of the flux fit. The radius as a function of anomaly
score is shown in Figure 9 (left panel). We note that some objects
were computed to have unrealistically high radii, so these values
may not be entirely trustworthy. We see that more extended objects
tend to be more anomalous. However, this effect isn’t very strong;
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Figure 6. UMAP embeddings of the residual image pixels. Left panel shows the UMAP for a random 100,000 object subsample. Right panel shows only the
3σ anomalies. These are color-coded by anomaly score.

Figure 7. The same UMAP embedding of the residual image pixels for the
3σ anomalies as in the right panel of Figure reffig:umap, color-coded by
GMM-assigned cluster.

most extended objects fall below the 2σ anomaly cut, including
most of the largest objects. This means that the anomaly detector is
not simply flagging every extended object as anomalous; it is able to
recognize normal extended objects, as well as anomalous compact
objects.

We also look at the blendedness of the object, which describes
the contamination of one object by the light from other close objects
(Figure 9, right panel). A blendedness of 0 indicates an isolated
object, while a value near 1 indicates a very blended object. The
red line at 10−0.375 at shows the cutoff suggested for eliminating
extreme blends; 4.6% of the objects in our sample are above this
threshold, while 9.9% of 3σ anomalies are above it. (Mandelbaum
et al. 2018).We see a trend in anomaly scorewith blendedness:more
blended objects are more likely to be anomalous. As in the extended
case, even the objects with high blending are mostly less than 2σ
anomalies. There is still a significant number of 3σ anomalies below
the cutoff; we plan to investigate this sample in upcoming work.

4.4 Identified Anomalies

As a result of this process, we have identified several interesting
anomalous objects. Some of these are shown in Figure 10. The im-
ages on the left are galaxies that have tidal features or are currently
undergoing mergers. The images on the right are objects that con-
tain anomalously blue cores. These could potentially indicate active
galactic nucleus (AGN) activity, or a central starburst (e.g. Menan-
teau et al. 2005). These anomalies were found with a combination
of the dimensionality reduction and clustering approaches detailed
above, along with a cursory visual inspection. We expect to find
interesting anomalies in a less supervised way in upcoming work,
with improved clustering and incorporation of metadata, though vi-
sual inspection will likely still be required as a final step. For these
and other anomalies found, we plan to see if these objects have
been observed in other surveys, and potentially perform follow-up
on particularly interesting objects.

5 SUMMARY & CONCLUSIONS

We searched for anomalous objects in a sample of ∼940,000 Hyper
Suprime-Cam images. We used a generative adversarial network
(GAN) to build a generative model of our data space. This allowed
us to identify images that are poorly represented by the model and
thus more anomalous with respect to the rest of the data.

Our conclusions are as follows:

• Our trained GAN is able to generate mostly realistic images
that represent the majority of the data.
• We find 1% of objects to be anomalous at the 3σ level, as

determined by the residuals of the generator and discriminator for
the closest image in the GAN’s latent space.
• A dimensionality reduction process and clustering algorithm

shows that the residual image pixels contain information about the
type of anomaly, which are distinguished by both color and shape.
• There are weak correlations between an object’s anomaly score

and its extendedness and blendedness. There is still a significant
number of anomalous objects that are compact and or isolated.
• We identify, through this process aswell as initial visual inspec-

tion, a number of anomalies that fall into two categories: galaxies
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Figure 8. Clusters of the objects in the UMAP. Each of the 10 clusters corresponds to a different color cluster in Figure 7. Each column shows the real image
at the top, the reconstruction in the middle, and the residual at the bottom, labelled with its anomaly score.

with tidal features and galaxy mergers, and objects with a blue core
that indicate AGN or central starburst activity.

We plan to make improvements, address current issues, and
extend this work as follows:

• Improve the construction and training of the GAN to better
model the full data space and thus identify more accurate set of
anomalies.
• Refine approach to clustering of anomalies. Revisit autoen-

coder to reduce dimensionality of residual images, and perform
more principled clustering on the results.
• Use additional information to characterize anomalies, includ-

ing generator and discriminator scores, catalog information such as
blendedness and extendedness, and color information.
• Perform anomaly detection on other magnitude slices to get a

complete sample of anomalies in the HSC catalog.
• Compare identified anomalies to previously published interest-

ing objects in HSC, as well as to other anomaly detection methods.

MNRAS 000, 1–?? (2019)
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Figure 9. Left panel: Effective radius of the objects as a function of their anomaly score. Right panel: Blendedness of the objects as a function of their anomaly
score. The red line is the cutoff value for most science use cases. The black solid lines show the sample mean; the dashed lines show 1σ , 2σ and 3σ away
from the mean. There are 80 objects with scores greater than 4000 not shown on the figures for clarity.

Figure 10. An initial selection of anomalies detected in our sample. Left panel: Galaxy mergers and tidal features. Right panel: Potential blue-core objects,
which may indicate AGN or central starburst.

For an updated list of completed and ongoing tasks, see
github.com/kstoreyf/anomalies-GAN-HSC/issues.
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APPENDIX A: CATALOG QUERY

We reproduce the SQL query used to select our data sample
in the HSC catalog. This includes the cuts, in magnitude and
on flags, as well as information about the images and objects.

The query can be run through the HSC data access site at
https://hsc-release.mtk.nao.ac.jp/datasearch/.

1 SELECT
2 -- Basic information
3 f1.object_id , f1.ra, f1.dec, f1.tract,

f1.patch, f1.parent_id ,
4

5 -- Galactic extinction
6 f1.a_g, f1.a_r, f1.a_i, f1.a_z, f1.a_y,
7

8 --- cmodel
9 ---- Total

10 f1.g_cmodel_mag , f1.r_cmodel_mag , f1.
i_cmodel_mag , f1.z_cmodel_mag , f1.
y_cmodel_mag ,

11 f1.g_cmodel_magsigma , f1.
r_cmodel_magsigma , f1.
i_cmodel_magsigma , f1.
z_cmodel_magsigma , f1.
y_cmodel_magsigma ,

12

13 ---- fracDev
14 f1.g_cmodel_fracdev , f1.r_cmodel_fracdev

, f1.i_cmodel_fracdev , f1.
z_cmodel_fracdev , f1.
y_cmodel_fracdev ,

15

16 ---- flag
17 f1.g_cmodel_flag , f1.r_cmodel_flag , f1.

i_cmodel_flag , f1.z_cmodel_flag , f1.
y_cmodel_flag ,

18

19 --- PSF
20 f2.g_psfflux_mag , f2.r_psfflux_mag , f2.

i_psfflux_mag , f2.z_psfflux_mag , f2.
y_psfflux_mag ,

21 f2.g_psfflux_magsigma , f2.
r_psfflux_magsigma , f2.
i_psfflux_magsigma , f2.
z_psfflux_magsigma , f2.
y_psfflux_magsigma ,

22

23 ---- flag
24 f2.g_psfflux_flag , f2.r_psfflux_flag , f2

.i_psfflux_flag , f2.z_psfflux_flag ,
f2.y_psfflux_flag ,

25

26 -- Flags
27 ---- pixel edge
28 f1.g_pixelflags_edge , f1.

r_pixelflags_edge , f1.
i_pixelflags_edge , f1.
z_pixelflags_edge , f1.
y_pixelflags_edge ,

29

30 ---- pixel interpolated
31 f1.g_pixelflags_interpolated , f1.

r_pixelflags_interpolated , f1.
i_pixelflags_interpolated , f1.
z_pixelflags_interpolated ,

32 f1.y_pixelflags_interpolated ,
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33

34 ---- pixel saturated
35 f1.g_pixelflags_saturated , f1.

r_pixelflags_saturated , f1.
i_pixelflags_saturated , f1.
z_pixelflags_saturated ,

36 f1.y_pixelflags_saturated ,
37

38 ---- pixel cr
39 f1.g_pixelflags_cr , f1.r_pixelflags_cr ,

f1.i_pixelflags_cr , f1.
z_pixelflags_cr , f1.y_pixelflags_cr ,

40

41 ---- pixel clipped
42 f1.g_pixelflags_clipped , f1.

r_pixelflags_clipped , f1.
i_pixelflags_clipped , f1.
z_pixelflags_clipped ,

43 f1.y_pixelflags_clipped ,
44

45 ---- pixel reject
46 f1.g_pixelflags_rejected , f1.

r_pixelflags_rejected , f1.
i_pixelflags_rejected , f1.
z_pixelflags_rejected ,

47 f1.y_pixelflags_rejected ,
48

49 ---- pixel inexact psf
50 f1.g_pixelflags_inexact_psf , f1.

r_pixelflags_inexact_psf , f1.
i_pixelflags_inexact_psf ,

51 f1.z_pixelflags_inexact_psf , f1.
y_pixelflags_inexact_psf ,

52

53 ---- pixel interpolated center
54 f1.g_pixelflags_interpolatedcenter , f1.

r_pixelflags_interpolatedcenter , f1.
i_pixelflags_interpolatedcenter ,

55 f1.z_pixelflags_interpolatedcenter , f1.
y_pixelflags_interpolatedcenter ,

56

57 ---- pixel saturated center
58 f1.g_pixelflags_saturatedcenter , f1.

r_pixelflags_saturatedcenter , f1.
i_pixelflags_saturatedcenter , f1.
z_pixelflags_saturatedcenter ,

59 f1.y_pixelflags_saturatedcenter ,
60

61 ---- pixel cr center
62 f1.g_pixelflags_crcenter , f1.

r_pixelflags_crcenter , f1.
i_pixelflags_crcenter , f1.
z_pixelflags_crcenter , f1.
y_pixelflags_crcenter ,

63

64 ---- pixel clipped center
65 f1.g_pixelflags_clippedcenter , f1.

r_pixelflags_clippedcenter , f1.
i_pixelflags_clippedcenter , f1.
z_pixelflags_clippedcenter ,

66 f1.y_pixelflags_clippedcenter ,
67

68 ---- pixel reject center
69 f1.g_pixelflags_rejectedcenter , f1.

r_pixelflags_rejectedcenter , f1.
i_pixelflags_rejectedcenter , f1.
z_pixelflags_rejectedcenter ,

70 f1.y_pixelflags_rejectedcenter ,
71

72 ---- pixel inexact psf center
73 f1.g_pixelflags_inexact_psfcenter , f1.

r_pixelflags_inexact_psfcenter , f1.
i_pixelflags_inexact_psfcenter ,

74 f1.z_pixelflags_inexact_psfcenter , f1.
y_pixelflags_inexact_psfcenter ,

75

76 ---- pixel bright object
77 f1.g_pixelflags_bright_object , f1.

r_pixelflags_bright_object , f1.
i_pixelflags_bright_object ,

78 f1.z_pixelflags_bright_object , f1.
y_pixelflags_bright_object ,

79

80 ---- pixel bright object center
81 f1.g_pixelflags_bright_objectcenter , f1.

r_pixelflags_bright_objectcenter , f1
.i_pixelflags_bright_objectcenter ,

82 f1.z_pixelflags_bright_objectcenter , f1.
y_pixelflags_bright_objectcenter ,

83

84 -- Measured information
85 ---- blendedness
86 m.g_blendedness_abs_flux , m.

g_blendedness_flag ,
87 m.r_blendedness_abs_flux , m.

r_blendedness_flag ,
88 m.i_blendedness_abs_flux , m.

i_blendedness_flag ,
89 m.z_blendedness_abs_flux , m.

z_blendedness_flag ,
90 m.y_blendedness_abs_flux , m.

y_blendedness_flag ,
91

92 ---- Shape of the CModel model
93 m.i_cmodel_exp_ellipse_11 , m.

i_cmodel_exp_ellipse_22 , m.
i_cmodel_exp_ellipse_12 ,

94 m.i_cmodel_dev_ellipse_11 , m.
i_cmodel_dev_ellipse_22 , m.
i_cmodel_dev_ellipse_12 ,

95 m.i_cmodel_ellipse_11 , m.
i_cmodel_ellipse_22 , m.
i_cmodel_ellipse_12 ,

96 m.r_cmodel_exp_ellipse_11 , m.
r_cmodel_exp_ellipse_22 , m.
r_cmodel_exp_ellipse_12 ,

97 m.r_cmodel_dev_ellipse_11 , m.
r_cmodel_dev_ellipse_22 , m.
r_cmodel_dev_ellipse_12 ,

98 m.r_cmodel_ellipse_11 , m.
r_cmodel_ellipse_22 , m.
r_cmodel_ellipse_12

99

100 -- Meta information
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101 ---- input count
102 f1.g_inputcount_value , f1.

r_inputcount_value , f1.
i_inputcount_value , f1.
z_inputcount_value , f1.
y_inputcount_value ,

103

104 ---- extendedness
105 f1.g_extendedness_value , f1.

r_extendedness_value , f1.
i_extendedness_value , f1.
z_extendedness_value , f1.
y_extendedness_value ,

106 f1.g_extendedness_flag , f1.
r_extendedness_flag , f1.
i_extendedness_flag , f1.
z_extendedness_flag , f1.
y_extendedness_flag ,

107

108 ---- background
109 f1.g_localbackground_flux , f1.

r_localbackground_flux , f1.
i_localbackground_flux ,

110 f1.z_localbackground_flux , f1.
y_localbackground_flux

111

112 FROM
113 pdr2_wide.forced AS f1
114 LEFT JOIN pdr2_wide.forced2 AS f2

USING (object_id)
115 LEFT JOIN pdr2_wide.meas AS m USING

(object_id)
116

117 WHERE
118

119 -- Select only primary targets
120 f1.isprimary = True
121 AND f1.nchild = 0
122

123 -- Rough FDFC cuts
124 AND f1.g_inputcount_value >= 3
125 AND f1.r_inputcount_value >= 3
126 AND f1.i_inputcount_value >= 3
127 AND f1.z_inputcount_value >= 3
128 AND f1.y_inputcount_value >= 3
129

130 -- Cuts on bright objects
131 AND NOT f1.g_pixelflags_bright_objectcenter
132 AND NOT f1.r_pixelflags_bright_objectcenter
133 AND NOT f1.i_pixelflags_bright_objectcenter
134 AND NOT f1.z_pixelflags_bright_objectcenter
135 AND NOT f1.y_pixelflags_bright_objectcenter
136

137 AND NOT f1.g_pixelflags_bright_object
138 AND NOT f1.r_pixelflags_bright_object
139 AND NOT f1.i_pixelflags_bright_object
140 AND NOT f1.z_pixelflags_bright_object
141 AND NOT f1.y_pixelflags_bright_object
142

143 -- Cuts on bad flags
144 AND NOT f1.g_pixelflags_edge
145 AND NOT f1.r_pixelflags_edge

146 AND NOT f1.i_pixelflags_edge
147 AND NOT f1.z_pixelflags_edge
148 AND NOT f1.y_pixelflags_edge
149

150 AND NOT f1.g_pixelflags_saturatedcenter
151 AND NOT f1.r_pixelflags_saturatedcenter
152 AND NOT f1.i_pixelflags_saturatedcenter
153 AND NOT f1.z_pixelflags_saturatedcenter
154 AND NOT f1.y_pixelflags_saturatedcenter
155

156 AND NOT f1.g_cmodel_flag
157 AND NOT f1.r_cmodel_flag
158 AND NOT f1.i_cmodel_flag
159 AND NOT f1.z_cmodel_flag
160 AND NOT f1.y_cmodel_flag
161

162 AND NOT f1.g_pixelflags_interpolatedcenter
163 AND NOT f1.r_pixelflags_interpolatedcenter
164 AND NOT f1.i_pixelflags_interpolatedcenter
165 AND NOT f1.z_pixelflags_interpolatedcenter
166 AND NOT f1.y_pixelflags_interpolatedcenter
167

168 AND NOT f1.g_pixelflags_crcenter
169 AND NOT f1.r_pixelflags_crcenter
170 AND NOT f1.i_pixelflags_crcenter
171 AND NOT f1.z_pixelflags_crcenter
172 AND NOT f1.y_pixelflags_crcenter
173

174 -- CModel magnitude limited
175 AND f1.i_cmodel_mag < 20.5
176 AND f1.i_cmodel_mag >= 20.0
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