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Abstract

The observed colours of galaxies are a combination of stellar emission, dust emission and absorption, as well
as the contribution from the active galactic nucleus (AGN). Fortunately, the AGN emission has a very distinct
shape, compared to the stellar emission, visible even in broad-band photometric measurements. We exploit
the impact of AGN in the observed broad-band colors to estimate posteriors for plausible AGN flux and disk
inclination.

Spectral energy distribution (SED) fitting codes use a predefined model library to estimate physical parameters
such as stellar mass and star-formation rate. In this work, we extended such a software, Prospector, to include
also an AGN component in the blue part of the SED originating from the accretion disk. In the era of large
datasets, a severe disadvantage of all SED fitting codes is the computing resources required. To sample fast
enough for practical use on million galaxy surveys, we emulate a complete galaxy and AGN model using neural
networks. Preliminary results show that we recover correctly the expect amount of AGN contribution using
the CPz sample of Fotopoulou & Paltani (2018). In our final publication, we aim to show that we can recover
AGN flux, inclination and extinction from simulated observations and observations from the XXL Survey and
OSSY Database.

Our photometric AGN identification method is crucial to avoid Euclid/LSST weak lensing systematics intro-
duced by poor photo-z estimates. Our method could also measure the fraction of AGN flux per galaxy over
cosmic time, helping investigate the impact of AGN feedback on star formation and the galaxy luminosity
distribution.

1 Introduction

Photometric estimation of AGN flux is important for understanding how AGN affect galaxy evolution. Un-
picking the physics behind how AGN interact with their hosts often relies on measuring correlations between
AGN and other galaxy properties (mass, star formation, quenching, merger history, morphology, etc). The
task of estimating AGN flux is often replaced with the simpler task of determining whether or not the source
flux is stellar-dominated, AGN dominated, or composite (Padovani et al., 2017). These three physical regimes
are an approximation of the inherently continuous balance between stellar and AGN flux.

Estimating AGN flux is also crucial for Euclid to accurately measure cosmological parameters with weak
lensing. AGN introduce systematics in such measurements because they alter galaxy colours and therefore
bias the photo-z distance estimates required for weak lensing (Salvato et al., 2019). At the billion-source scale
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of Euclid, systematics are the limiting factor for precision cosmology (Laureijs et al., 2011). Our method
identifies galaxies likely to be ‘contaminated’ with AGN flux, allowing them to be cleaned from the weak
lensing sample.

Previous work on estimating AGN flux covers a wide range of methods. One particularly relevant method
is the application of MCMC methods to perform Bayesian inference of AGN properties on known hosts. These
often use sophisticated high-dimensional models of AGN (Rivera et al., 2016). Sample sizes are typically in
the tens to thousands, perhaps due to computational cost; each inference may take several CPU-days. Such
methods are popular where plentiful multi-wavelength data is available, often including optical or IR spectra
(i.e. not on photometric-only data).

At KSPA 2019, we aimed to apply Bayesian inference to AGN flux measurement (which reduces to
AGN detection if desired) using only photometric data. The key advantage of using Bayesian inference over
e.g. color cuts (Assef et al., 2017) or supervised learning (Fotopoulou & Paltani, 2018; Nakoneczny et al.,
2019) is that we explicitly marginalise over all possibilities. This allows us to make wide but well-calibrated
predictions where the data is genuinely inconclusive - which we expect from photometry. We also require our
method to be sufficiently fast (i.e. have a low computational cost) to be applied to the largest surveys. To
dramatically speed up inference, we emulate our AGN/galaxy model with a neural network.

2 Forward Model of Galaxy + AGN

To perform inference, we need to know what photometric observations we would expect given a set of
galaxy parameters. In the literature, the description of galaxy SEDs is performed with two strategies 1)
empirical models derived from observed galaxies (see Brown et al. 2014 for a recent example) and 2) stellar
populations synthesis models which build realistic galaxy SEDs by assuming an initial stellar mass function,
star formation history, and gas/dust component e.g. (Bruzual & Charlot, 2003; Maraston, 2005). The former
approach allows for realistic representation of galaxies, while the latter allows for the estimation of physical
parameters such as mass and star formation rate. In this work, we use synthetic models as we are interested
in infering physical parameters.

2.1 Prospector/FSPS galaxy model

We use the Python package Prospector (Leja et al., 2017) as a framework for our method. Prospector is
a galaxy SED fitting tool designed to create realistic galaxy SEDs, and to sample these SEDs given some
observation. The source frame galaxy SEDs are created using FSPS (Conroy et al., 2009) (called via pyFSPS).
Mock observations are made by redshifting the SED and then applying bandpasses for each desired filter
(via sedpy). Given a user-provided observation and associated uncertainties, Prospector calculates the log-
likelihood of each galaxy parameter vector θ as (by default) the log-likelihood of the observation from the
mock observation observed under Gaussian noise.

Prospector can estimate posteriors from this log-likelihood and user-defined priors by sampling; either
through affine-invariant ensemble MCMC (via emcee) or nested sampling (via dynesty). Prospector has
previously been used to estimate galaxy age and SFR from photometry for the 3D-HST survey (Leja et al.,
2019).

We require a model flexible enough to explain real observations, but with few enough free parameters
that those parameters could be reasonably constrained by our limited observations. Building on (Leja et al.,
2017), we assume the following galaxy model (each entry corresponds to an FSPS argument):

Free Parameters

1. Stellar mass: log-uniform prior [109, 1012] M�

2. Star formation: delay-τ model, with log-uniform τ prior [0.1, 30]

3. Dust optical depth at 5500Å: 0.6, with uniform prior [0, 2]

Fixed Parameters
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1. Initial mass function: Kroupa, following Kroupa (2001)

2. Dust law: Calzetti (Calzetti et al., 2000)

3. Dust emission: using Draine & Li (2007), reference intensity Umin = 1. (i.e. MW-like), PAH fraction
by mass γ = 4% , and qpah = 0.1% dust in high radiation intensity

4. IGM absorbtion: Madau attention at 1.

5. Metallicity: solar (i.e. logzsol=0.)

To make progress in the limited time available during the Kavli Program, we fix the redshift of each
galaxy to the spectroscopic redshift. We will extend our model to preserve the redshift as a free parameter
and update our results.

2.2 AGN Components

Accurate physical models of AGN SEDs remain an ongoing research challenge - in part due to the extensive
variation of observed SEDs. Fortunately, our limited (photometry) data ensures that we need only be sensitive
to the most crucial of these variations.

We create an SED model composed of accretion disk and dusty torus components. The normalisation of
disk and torus are allowed to vary independently. This allows us to model AGN where the disk dominates
the SED, and AGN with a heavily obscured disk but bright torus. Both models are described in the following
sections.

2.2.1 Accretion Disk

We use SDSS quasar observations to model the accretion disk. For quasars, the accretion disk is expected
to dominate in wavelengths short of 1 micron. We use the median composite radio-quiet quasar reported in
Shang et al. (2011) as a template and vary the normalisation factor. As we model the torus independently,
we apply an arbitrary power-law damping to the template at wavelengths above 1 micron to exclude any
contribution at longer wavengths.

We apply an independent Calzetti extinction law to the disk component to allow for different typical dust
optical depths for the (galaxy) stellar and (AGN) disk environments. Following Calzetti et al. (2000), this
extinction is given by:

freddened = f0 · 10−0.4·k·EB-V (1)

where k is the wavelength.

2.2.2 Dusty Torus

To create our torus SED model1, we use the simulation CLUMPY by Nenkova et al. (2008). AGN tori were
previously thought to be composed of homogeneously distributed dust, but failures to model observations
have led researchers to view tori as composed of dusty clumps. CLUMPY simulates the rest-frame SED
that would be observed from the (re-)emission of such a clumpy torus under a pre-defined geometrical
configuration. The main parameters are, the inner radius Rd, set by the dust sublimation temperature Td,
the outer radius R0, the total number of clouds N0, the opening angle, σ, and the inclination with respect
to the observer i. The clumps are of equal optical depth τV and distributed with radial density profile r−q

out to Y = R0

Rd
and various possible angular distributions.

Nenkova et al. (2008) provides a grid of SEDs calculated at each possible combination of these parameters.
Our 12 photometric bands do not provide sufficient information to constrain all 6 torus parameters (in
addition to the galaxy and accretion disk components). To restrict our free parameter space, we assume the
physically reasonable values of:

1Even though Prospector offers the same AGN torus templates, we decided to introduce them as a separate component,
because in the Prospector implementation they are linked to the galaxy flux. Given that we want to have solutions that are
100% dominated by the quasar, we must allow the torus model to contribute independently from the galaxy emission.
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Figure 1: Dusty torus simulations by inclination. Based on simulations by Nenkova et al (2008).

• Opening angle: σ = 30 deg

• Cloud radial distribution: q = 3

• Disk size: Y = 30

• Number of clouds: N0 = 5

Inclination has the most significant effect on the resulting photometry and so we allow the inclination to vary.
Given our fixed parameters above, we interpolate between the varied-inclination SEDs to create an SED as
a function of arbitrary inclination ftorus(i). For the prototype developed at the Kavli Program, inclination
was held fixed at 30 deg. This model was used for the results currently presented in this report.

Mirroring the AGN disk model, we apply an arbitrary power-law damping to the torus SED below 1
micron, to account for any intervening extinction.

3 Sampling Approaches

We have defined a model for the photometry we expect given a galaxy with (potential) AGN disk and torus
SED contributions. We would like to be able to calculate posteriors for some observation by sampling this
model. We also require this sampling to be fast enough to scale to modern photometric datasets on the order
of 10 million galaxies, such as the XXL Survey (Fotopoulou in prep.).

First, we demonstrate that our model is flexible enough to provide plausible fits to real observations. To
do this, we use standard MCMC and nested sampling approaches. However, these approaches are too slow
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Figure 2: Model fit via nested sampling to spectroscopically-identified starforming galaxy.

for million-galaxy-scale use. To resolve this, we present a neural network emulation method to provide a
100x speedup, enabling us to calculate reliable posteriors at only modest computational cost.

3.1 Baseline Fits Using Nested Sampling or Gradient-Free MCMC

Here, we use dynesty (nested sampling) and emcee (MCMC) to sample our model. emcee implements an
affine-transform-invariant version of Metropolis-Hastings MCMC. This MCMC approach is gradient-free; it
neither requires nor benefits from any knowledge of the forward model gradients. We make a qualitative
inspection of the fits and find empirically that 1) our model successfully reproduces the observations and
2) nested sampling is sometimes able to find parameters which reproduce the observations where MCMC
cannot, suggesting that MCMC is not always able to fully explore the posterior in the time available.

We first apply our model to a galaxy spectroscopically identified as starforming without a significant AGN
component (Figure 2). Our model is able to produce a fit which reproduces the observations. The posteriors
correctly identify the SED contribution of both AGN disk and AGN torus to be negligible (Figure 3).

We next apply our model to a galaxy spectroscopically identified as a quasar, shown in Figure 4. Our
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Figure 3: Posteriors of galaxy model parameters of the starforming galaxy of Fig. 2.
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Figure 4: Model fit via nested sampling to spectroscopically-identified quasar.

model is again able to produce a plausible fit. The posteriors correctly identify the SED being AGN-
dominated, with significant contributions from both the disk and torus. The galaxy contribution is only
non-negligible in the long-wavelength regime, as expected from cold gas emission.

Unfortunately, sampling our model is prohibitively slow for large surveys. Each sample takes 27ms,
and hence calculating posteriors for each galaxy takes approximately 20 minutes. 100,000 galaxies would
require approx. 14,000 CPU-hours (3.8 CPU-years). In the next section, we use neural network emulation
to drastically reduce this.

3.2 Neural Network Emulation and Hamiltonian Monte Carlo

Our model is effectively a mapping between galaxy (and AGN) parameters θ and photometric observations
x. Calculating x from θ is the time-consuming part of each forward pass, as the log-likelihood is quick to
calculate analytically. We aim to speed up this calculation.

To do so, we will learn the mapping with a neural network, x̃ = fw(θ). Because the dimensionality of
input and output are relatively low (12 photometric bands and 7 galaxy parameters), a simple dense neural
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network is sufficient. To train our network, we create a Latin hypercube of 1 million possible galaxy/AGN
model parameters /theta. We calculate synthetic observations x for each /theta to construct a training set
of 1 million (/theta, x) pairs.

By leveraging the compiled graph approach of TensorFlow, we can evaluate our trained network extremely
efficiently. For our simple network, most of the evaluation time for a single call is overhead. We can evaluate
multiple chains in parallel by providing the current θ of each chain along the batch dimension. This allows us
to generate samples across several hundred chains at almost identical computational cost as for a single chain.
Further, because our network is differentiable (unlike the complex original model), we can apply Hamiltonian
Monte Carlo to efficiently explore the parameter space.

Figure 5 shows an example of our NN/HMC method recovering the correct parameter values for a simu-
lated galaxy observation, where the ‘real’ photometry was calculated with the full galaxy model. We achieve
a sampling time of 0.17ms per sample, a factor of 100 faster than with the full model.

4 Conclusion

During the Kavli Summer Program in Astrophysics 2019, we explored applying Bayesian inference and
neural network emulation to detect and estimate AGN flux from photometry. We extended the galaxy SED
fitting package Prospector to include independent AGN disk and dusty torus components. In a qualitative
investigation using standard sampling approaches (nested sampling and gradient-free MCMC), we find that
our new forward model correctly identifies SDSS starforming galaxies as likely AGN-free and SDSS quasars
as AGN-dominated. We then train a neural network to emulate our forward model, which both dramatically
increases sampling speed (0.17ms vs 27ms per sample) and provides forward model gradients, allowing the
use of Hamiltonian MCMC sampling.

We would like to emphasise that these results are preliminary and not yet suitable for citation. Our goal
has been to establish if our Bayesian approach is possible, and if it can be made sufficiently fast for practical
use. Next, we need to quantitatively confirm that our method is reliable. We will do this by verifying that the
parameters of synthetic galaxies are correctly recovered, particularly for synthetic galaxies with observations
similar to real SDSS galaxies. We also hope to show that we correctly report significant AGN flux for galaxies
with broad-line-identified AGN in the XXL or OSSY catalogs.

We are grateful to the organisers and funders of KSPA 2019 for providing the opportunity and encourage-
ment to collaborate on this work. We hope that this method will ultimately allow researchers to remove the
AGN systematic from weak lensing cosmological parameter estimation, and to investigate how AGN impact
galaxy evolution through a new dimension - the AGN flux fraction.
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