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1 INTRODUCTION

In the era of large current and upcoming time-domain surveys,
classification and discovery of optical transient sources will be-
gin to become reliant on machine classification to handle the large
amounts data being collected. Current ground based surveys such
as the Zwicky Transient Facility (ZTF), Dark Energy Survey (DES)
and the All Sky Automated Survey for Supernovae (ASAS-SN) are
able to scan thousands of square degrees continuously amounting in
terabytes of data annually, and recently the Panoramic Survey Tele-
scope andRapid Response SystemSurvey (Pan-STARRS) delivered
the first petabyte scale optical data release ((Bellm et al. 2018; Col-
laboration: et al. 2016; Shappee et al. 2014; Stubbs et al. 2010;
Chambers et al. 2016). While space based time-domain missions
have provided unprecedented photometry, light curves and proper
motions for galactic sources, withKepler&K2 targeting∼400,000+
individual stars, TESS is expected to target at least 200,000 targets
of the ∼9.5 million targets in TESS input catalog, and Gaia is al-
ready releasing almost 2 billion sources (Borucki et al. 2010; Howell
et al. 2014; Stassun et al. 2018). The importance of being able to
mine these increasing amounts of data to not only identify known
transients but make discoveries of new or anomalous sources is
paramount to the success of future transient astronomy.

Supervised machine learning has been utilised already by sev-
eral surveys and teams in astronomy for source identification over
large data sets. A large majority of the work to date has been in the
identification of variable stars and quasi-stellar objects from light
curves via multivariate Gaussian mixture models, random forest
classifiers, support vector machines, or Bayesian networks (Deboss-
cher et al. 2007; Richards et al. 2011; Pichara et al. 2012; Bloom
et al. 2012; Kim & Bailer-Jones 2016; Kim et al. 2011; Macken-
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zie et al. 2016; Pichara & Protopapas 2013). The work aforemen-
tioned all successfully shows the power in machine classification
of sources via trained algorithms, and explores the most successful
feature properties for both folded and unfolded light curves with
the most common features being compiled into the python FATS
package by Nun et al. (2015). Features are able to express given
time-series data as a set of normalised values, each representing
a measurable property or characteristic of light curve. Classifica-
tion of non-folded light curves of extragalactic transient sources has
also been explored, moving away from traditional template fitting
to computationally more robust supervised and semi-supervised
techniques also requiring feature extraction (Richards et al. 2011;
Karpenka et al. 2012; Lochner et al. 2016; Narayan et al. 2018;
A.Möller et al. 2016).

What is limiting by the current supervised techniques is the
need for full light curves (non real-time) and prior knowledge of
transient classes for network training. Work towards real-time clas-
sification of supernovae byMuthukrishna et al. (2019) andMöller &
de Boissière (2019) have shown the power in deep Recurrent Neu-
tral Networks (RNNs), run on Graphics Processing Units (GPUs),
and their ability to provide fast real-time classifier that don’t rely
on extracting computationally expansive features of the input data,
only requiring features of training data. Even with the advances
of machine in astronomy, mining data for unknown or anomalous
events is relatively unexplored, as the majority of current networks
work off pre-trained algorithms. Work by Mackenzie et al. (2016)
developed an unsupervised feature learning algorithm which takes
subsections of variable light curves to cluster and use as features to
train a linear support vectormachine. This work is the first of its kind
to eliminate the need of traditional feature extraction, limiting the
computational burden and biases of feature selection. Only limited
work into actual transient classification or anomaly detection via
unsupervised means has been preformed. Unsupervised clustering
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of variable star light curves was preformed by Valenzuela & Pichara
(2018) by creating variability trees using k-medoids clustering algo-
rithm of fragmented light curves. They show thismethodwas able to
be used to create an unsupervised variability tree, backtrace known
light curves to determine their individual tree structure and then
preform similarity searches of unknown light curves. This method
offers a novel and computationally fast approach to data exploration
but is again limited by the need of known light curve examples for
similarity searches. Giles & Walkowicz (2019) again utilised clus-
tering of light curves in full, using Density-Based Spatial Clustering
ofApplicationswithNoise (DBSCAN) to clusterKepler light curves
to identify outliers for visual inspection. They showed the success-
ful extraction of the known anomalous Boyajian’s star through their
method, however the limitations of DBSCAN assuming clusters to
have constant density was identified Giles & Walkowicz (2019). It
should be noted that currently all work preformed on light curve
classification in astronomy have used long cadenced light curves,
spanning from30minute cadence to several day cadencewith folded
light curves.

Currently, the majority of wide field surveys explore a limited
region of the luminosity-timescale phase space, with an average
cadence of hours to days between visits to fields, with only few pro-
grams exploring the phase space shorter then 1 hour cadence (see,
Roykoff et al. (2005); Rau et al. (2009); Lipunov et al. (2004, 2007);
Berger et al. (2014)). What is largely unexplored by these surveys is
the phase space of transient events occurring on seconds to minutes
time scales, events which are often referred to as ‘foreground fog’ in
traditional surveys. There are several events expected to occur over
seconds to minutes and understanding the transient Universe on
these timescales is crucial for understanding the transient Universe
as a whole. Take the upcoming Large Synoptic Survey Telescope
(LSST), each night upwards of 1 million alerts are predicted to be
generated, it will be invaluable to be able to meaningfully quantify
the expected volume of short timescale events will assist in follow-
up priorities (LSST Science Collaboration et al. 2009). Using fast
cadenced light curves from the Deeper, Wider, Faster program we
will be exploring this phase space

2 THE DEEPER, WIDER, FASTER PROGRAM

Several new and interesting astronomical fast transient events have
been discovered in recent decades and the progenitors and phys-
ical mechanisms behind many of them are still relatively poorly
known (eg. Fast Radio Bursts (FRBs), supernova shock breakouts
and other rapidly evolving extragalatic events (see Lorimer et al.
(2007); Garnavich et al. (2016); Prentice et al. (2018); Perley et al.
(2018) respectively). What has limited our ability to detect and
understand these events is the capability to gather data in short,
regular time intervals before, during and after the events as well as
over a range of wavelengths. The Deeper, Wider, Faster program
(DWF Andreoni & Cooke (2018)) has been designed with these
challenges specifically in mind, constructing a multi-wavelength
and simultaneous observational program, of over 30 facilities to
date 1. DWF takes a ‘proactive’ approach to transient astronomy,
with multi-wavelength observations of the target fields taken con-
tinuously over 1-3 hour periods, capturing before, during and after
many of the transient events. DWF unitises facilities with large field

1 http://bit.do/DWF

of views, targeting three square degrees at once using the Dark En-
ergy Camera (DECcam) as our primary imager, taking continuous
20 second exposures. Using DECam, DWF has an image cadence
63 times higher then the Deep Lens Survey from the early 2000s
(Wittman et al. 2002) to a similar magnitude limit, and cadence at
least 45 times higher then the on-going Zwicky Transient Facility
and surveying 6 magnitudes deeper (Kulkarni & Rau 2006). From
our real-time processing, we are able to rapidly identify candidates
and coordinate rapid-response and long term follow-up of candi-
dates. DWF was begun in 2014 and since its inception has had two
commissioning runs and six operational runs (see ?, Cooke et al.,
in prep).

The unique design of DWF allows exploration of transients
on the second-to-minute timescales, providing further understand-
ing into the classes of already observed fast transient events as
well as exploring events theorised to occur on these timescales.
The optical component of DWF is able to explore a region of pa-
rameter space not yet reached by previous transient surveys, by
taking continuous, high-cadenced 20 second exposures, imaging
with the wide-field sensitive Dark Energy Camera (DECam) on the
4m Blanco telescope in Chile or 30 second exposures using the
Hyper-SurprimeCam (HSC) imager on the 8m Subaru telescope in
Hawaii. Note. This work will only focus on the data gathered by DE-
Cam. Work by Andreoni et al. (2019) utilised the unique DWF data
and the ‘Mary’, our transient difference image discovery pipeline
to constrain extragalatic transients on the minute timescales. In this
work, we will be examining light curves generated purely from
science images for all sources in our chosen fields, and exploring
the ability to identify known and unknown transient and variable
sources through the use of unsupervised machine learning. By ex-
amining every source light curve through an unsupervised network,
we aim to not only distinguish clear separations of sources in fea-
ture space but identify and classify unknown and outlier sources to
comprehensively explore transient event and source variability on
the minutes-to-hours timescale.

3 DATA

Thisworkwill explore unsupervisedmethods applied to light curves
generated from the fast cadenced data collected during DWF runs
using DECam. As aforementioned previously, we collect 20 second
continuous imaging of targeted fields, acquired in a single band, the
‘g’ filter. We choose the continuous use of the ‘g’ filter to maximize
depthwithDECam, reaching∼0.5 deeper in comparison to the other
filters. With an average seeing on 1.0 arcseconds and airmass of 1.5
(relatively high airmass due to the field constraints of simultane-
ous multi-facility observations), the expected limiting magnitude in
‘g’ band is m(AB) ∼ 23. The DECam images are post-processed
through the NOAO High-Performance Pipeline System (Valdes &
Swaters 2007; Swaters & Valdes 2007; Scott et al. 2007) and then
transferred to the OzStar supercomputer at Swinburne University
of Technology for our data analysis. The DECam 62 CCD mosaic
is separated into individual fits files for each extension. Each CCD
is processed separately for source extraction using SExtractor and
all source magnitudes are corrected for exposure time and magni-
tude offsets against the SkyMapper Data Release 2 catalogue Bertin
& Arnouts (2010); Onken et al. (2019). A master source list is
compiled by cross matching all extracted sources from each CCD,
over all exposures within 0.5 arcsecond radius into one catalogue
of source positions. This master catalogue is used to to create light
curves for each source, with any non-detections in single exposure
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having the CCD exposure detection upper limit represented in the
light curve.

In totality DWF has targeted 15 separate fields, accumulating
over 1 million source detections and 6 million nightly light curves.
In thisworkwewill be analysing light curves gathered over 1.5 hours
of continuous observation on the Antlia field, as proof of concept
of unsupervised clustering for transient and anomaly detection. The
data was collected on February 6th 2017, using a field centre of
RA: 10:30:00.0 DEC:-35:20:00.0 on the Antlia cluster of galaxies.

4 METHODOLOGY

In this sectionwewill outline ourmethodology across several stages,
outlined in figure X below and explained in the following sections.
Note that all stages are preformed on nightly light curves with an
average cadence of 68 seconds between light curve points, account-
ing for both exposure and readout. We utilize python for all stages,
using the following packages scikit-learn, hdbscan, FATS, astropy,
numpy, pandas and matplotlib (Pedregosa et al. 2011; McInnes
et al. 2017; Nun et al. 2015; Price-Whelan et al. 2018; Oliphant
2015; McKinney et al. 2010; Hunter 2007). In this paper we will
present this method applied to DWF light curves of sources from
the Antlia field on the night of February 5th 2017.

4.1 Features

To represent our unique fast-cadenced data, we use a mixture of fea-
tures developed and used primarily for the identification of variable
stars and quasi-stellar objects. We extract 25 unique features from
each light curve using both the FATS python package and manual
calculation (see Appendix A for the full feature list). The major-
ity of our features were first presented in the work by Richards
et al. (2011) in classifying variable stars from sparse and noisy
time-series data, We chose the features from this work that were
not specifically restricted to folded light curves or periodic sources,
these features being amplitudes, Beyond 1 standard deviation, linear
trend, maximum slope, median absolute deviation, median buffer
range parentage, pair slope trend, range of cumulative sum, skew,
small kurtosis, standard deviation, see Richards et al. (2011) figure
8 for more detail. The other features we have taken from stellar vari-
ability detection are focused around Fourier decomposition, giving
in H1 (amplitudes), R21 (ratio of 2nd to 1st amplitude) and R31
(ratio of 3rd to 1st amplitude). The remaining features were taken
from work in quasi-stellar object selection, these being auto corre-
lation length, consecutive points, variability index and Stetson KAC

as used by Kim et al. (2011) and mean, σ and τ taken form an con-
tinuous auto regressive model fitted to our data from Pichara et al.
(2012).

4.2 HDBSCAN

We utilise the newly released python library2 by McInnes et al.
(2017) to implement Hierarchical Density-Based Spatial Cluster-
ing of Applications with Noise (HDBSCAN), a method first pro-
posed by Campello et al. (2013). HDBSCAN takes the approach of
Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) and converts it into a hierarchical clustering algorithm by

2 https://hdbscan.readthedocs.io/en/latest/

Parameter Setting

Algorithm Best
Allow single cluster False
Alpha 1.0
Cluster selection method eom
Core distance n jobs 4
Leaf size 40
Metric Euclidean
Min cluster size 5

Table 1. Parameter settings for HDBSCAN algorithm for our analysis

varying the value of epsilon to identify clusters of varying densi-
ties, seeMcInnes et al. (2017). To better understand howHDBSCAN
works we will first outline the original DBSCAN algorithm by Ester
et al. (1996). DBSCAN is able to take a set of given points perform
nearest neighbour searches in a given feature space to determine
clusters of over densities, points closely related in distance, and
identify outlier points that exist in low density regions as noise.
DBSCAN requires two parameters, epsilon (ε), which represents
the radius of the neighbourhood search, and minimum number of
points (minPts), which must exist in a neighbourhood to constitute
a dense region. What has limited the use of DBSCAN in the past is
the inability to vary ε in a given data set, requiring clusters to have
similar densities, however, HDBSCAN is able to implement chang-
ing values of ε to successfully explore clusters of varying densities.
We opt to limit the restrictions on cluster decision making when
using HDBSCAN using parameters as shown in table X. We aim to
create as many distinct clusters in our feature space as the algorithm
will allow to maximize our classification of the quality and events
present in the data and limit the outliers to only data points in very
low density regions.

4.3 t-SNE

To help visualise the clustering of objects in our high dimensional
feature space we use the T-distributed Stochastic Neighbor Em-
bedding (t-SNE) algorithm developed by van der Maaten & Hinton
(2008). The t-SNE algorithm uses the same Euclidean distance met-
ric to measure the proximity of all features in higher dimensional
space and converts these distances to probabilities using a normal
distribution. A similarity matrix of the probabilities is stored for the
higher dimensional space, and the feature space is then randomly
collapsed down to either 2 or 3 dimensions where the Euclidean dis-
tance is calculated once again using a t-distribution to assign prob-
abilities and saved as a second similarity matrix. The two matrices
are then minimized using the sum of Kullback-Leibler divergence
of all data points using a gradient descent method to return a 2 or
3 dimensional representation of the distance of data in our feature
space.

4.4 Astronomaly

To explore our sub clusters for the most anomalous light curves we
use the python packageAstronomalywhich is comprised of a python
back end and JavaScript front end to easily explore the data (Lochner
et al in prep 2019). We run Astronomaly on each cluster, and unitize
the inbuilt isolation forest algorithm, using our already calculated
features, to then visually inspect the highest ranking anomalous light
curves, as well as the interactive t-SNE plot to explore the lower
dimensional cluster space.
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Figure 1. Workflow of light curve analysis, broken in to four stages. The first stage, indicated by purple, is feature extraction. Each light curve is looped through
this process to write a master ascii file of all light curve IDs and features. The next stage, indicated by pink, is the unsupervised clustering and visualisation
using t-SNE dimensionality reduction and HDBSCAN clustering. The clusters are saved into two separate outputs, the first being a pickled data frame of all
light curve IDs and cluster assignments ascii feature files for each cluster, and the second an ascii feature files for each cluster. The final stages are light curve
visualisation, the first, shown in blue, is outlier identification in each cluster using Astroanomaly. Each cluster set is loaded and an isolated forest is computed
across all features to show the most anomalous light curves of the clusters via the interactive web GUI. The second stage of visualisation, shown in green is the
generation of all light curve plots. These plots are able to be scanned through rapidly to validate the clustering success as well as identify outlier light curves
from the identified noise.
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Figure 2. Histogram of outlier scores for 170206 Antlia light curves, note
themajority of light curves have very low outlier scores below 0.1, indicating
that the majority of light curves exist in similar feature space.

5 RESULTS

We started with a total of 70350 sources identified in the Antlia field
from the five night master source list complied, of these, 61844
light curves met the criterion of having Ndet > 3. The chosen
25 features were extracted from each of the 61844 light curves.
The light curves contain photometric information of sources from
80 exposures over a 1.5 hour period. A total of 29 clusters were
Identified through the HDBSCAN clustering algorithm, as well as
a grouping of noise, light curves that did not satisfy the distance
requirements to join the identified clusters. See Appendix B for
individual cluster information. Using HDBSCAN the outlier scores
for each light curve using the GOSH outlier algorithm, and from
these results we are able to firstly verify that the vast majority of
our data have lower outlier scores, see figure 2, with ∼90% of light
curves below a score of 0.1.

5.1 Cluster Sub Grouping

The 29 clusters can be broken down into 12 sub groups shown in ta-
ble 2. The majority of clusters fall into the sub groups of photometic
anomalies caused by telescope dithering, ccd artifacts/cosmic rays
or photometric correct issues. However two very clear sub group-
ings, A and B, separated out variable sources discussion of which
will be followed in section 5.2. Representation of the clusters in
feature space can been seen in figures 3 and 4, where the feature
space has been reduced into 2 and 3 dimensions respectively using
t-SNE. The t-SNE plots clearly show the feature space is dominated
by one main cluster (number 28), which is unsurprising, as we ex-
pect the majority of sources in the field to be unchanging over the
minutes to hours time scales. Figure 3 further shows the grouping
of clusters with related light curves by highlighting the sub groups
containingmore then one cluster. From the sub grouping of clusters,
we are able to meaningfully quantify the our light curves for this
field, finding that 91% are grouped into one cluster, of seemingly
unchanging sources, while 1.6% of light curves were affected by

telescope dithering and/or the use of the hexapod3 on the DECam
instrument, and only 0.56% of light curves had photometric correc-
tion issues over the first 5 exposures (of the 80) due to the initial 5
point dither pattern. We further identify 24 light curves which have
been contaminated by cosmic rays/hot pixel spots during only one
exposure throughout the night, and∼ 5% of light curves and 12 light
curves of faint sources below our detection threshold for majority
of exposures.

5.2 Sub groups identifying Variable Sources

Two sub groups of light curves showing variability were identified
in groups A and B, with A showing 7 clear variable sources, and B
showing 9 noisier light curveswith possible astrophysical variability
as well as possible variability caused by photometric correction
. Each identified source was cross matched to the International
Variable Star Index (VSX) catalogue (Watson et al. 2006). From
groupAwe found that 4/7 identified sourceswere cataloged as either
eclipsing binaries, RR lyrae or spotted stars with periods ranging
between 0.27 - 0.45 (days). Of the remaining three source, two
appear to be steadily rising between 0.25-0.50 magnitudes over the
1.5 hours of exposure, not unlike the other identified variables. The
remaining one uncatalogued variable source appears to be varying
with a period of ∼ 1.5hours, fluctuating ∼ 0.15 magnitudes from
peak to trough.

5.3 Un-clustered Noise

3270 light curves which were identified as noise and not assigned
to a specific cluster. See Appendix C for individual cluster details.

WORKING ON Using Astronomaly to visually inspect the
light curves classified as noise, additional variable sources were
identified. See figure five for a subset of identified varying sources
over a range of magnitudes. It’s interesting to note the variable
sources that were grouped as noise have larger variance in their
magnitude change then those grouped in cluster 1.

We chose to recover the 5 RR lyrae stars in our field of view,
as identified in Gaia data release 2, to determined the periodic
timescales of variable sources which are able to be identified and
discovered using this method.

6 CONCLUSION

WORKING ON
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main cluster removed, highlighting the noise, in black, and identified clusters in color. The orange to red smaller clusters, although the smallest, have the largest
apparent distance to the main cluster.
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8 S. Webb

Sub Clusters # Light Properties of Light Curves
Group Curves

A 1 7 Varying sources.

B 11 9 Possible varying sources.

C 18 10 Faint defuse sources (galaxies) or
sources amongst defuse galaxies.

D 22 12 Faint source below detection
threshold for majority of exposures.

E 9, 17 14 Sources appear in ccd chip gaps
50% of observations and only partially
on ccds for remaining exposures.

F 0, 12, 20, 24 Sources unchangingone bright
27 detection caused by ccd anomaly.

G 6 42 Noisy light curves with images showing
possible extinction from clouds.

H 2, 10, 19 157 Sources only detected during 5 point
21, 23, 24 dithers during observations.
25, 26

I 3, 4, 7 191 Sources appearing 0.2 magnitudes
brighter in first four light curve points.

J 5 310 Faint and noisy sources bouncing
around 0.4 magnitudes over .
observations.

K 8, 13, 14, 1,003 Sources near edge of ccd resulting in
15, 16 in dimming and brightening as the

source moves ccd position during
observations.

L 28 56693 Flat light curves of unchanging sources.

Table 2. Sub grouping of like clusters and their properties.
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ID Type Period Cluster Observations
(Gaia DR2) (Days)

5445663255931713664 RRab 0.68 13 Located very nearby in feature space to new variables uncovered in cluster 1. See Appendix B.
5445874740121318656 RRab 0.508 -1 (noise) Only partial detections due to dithering where source is partly on ccd for majority of exposures.
5447173538231827584 RRc 0.33 28 Seemingly flat on 1.5 hour time scales.
5444099161984715776 RRc 0.31 28 Below limiting magnitude for majority of exposures and seemingly unchanging in any detections.
5447200613705402752 RRab 0.57 28 Seemingly flat on 1.5 hour time scales.

Table 3. Caption

Feature Description Inputs Refs

Amplitudes Half the difference between Magnitude Richards et al. (2011)
the median of the maximum 5% and the median
of the minimum 5% Magnitude.

Auto correlation length Length of linear dependence of a signal with magnitudes Kim et al. (2011)
itself at two points in time

Beyond1Std Percentage of points beyond one Magnitude & error Richards et al. (2011)
standard deviation from the weighted mean

CARmean The mean of a continuous time auto regressive Magnitude & time & error Pichara et al. (2012)
model using a stochastic differential equation

CARσ The variability of the time series on Magnitude & time & error Pichara et al. (2012)
time scales shorter than τ

CARτ The variability amplitude of the Magnitude & time & error Pichara et al. (2012)
time series

H1 Amplitude derived using the Fourier Magnitude Kim & Bailer-Jones (2016)
decomposition

Con The number of three consecutive Magnitude Kim et al. (2011)
data points that are brighter or fainter then 2σ
and normalized by N -2

Linear Trend Slope of a linear fit to the light curve Magnitude & time Richards et al. (2011)

MaxSlope Maximum absolute magnitude slope between two Magnitude & time Richards et al. (2011)
consecutive observations

Mean The mean magnitude Magnitude Kim et al. (2014)

Mean Variance the ratio of the standard deviation Magnitude Kim et al. (2011)
to the mean magnitude

Median Absolute Deviation The median discrepancy of the data Magnitude Richards et al. (2011)
from the median data

Median Buffer Range Percentage Fraction of photometric points Magnitude Richards et al. (2011)
with amplitude/10 of the median magnitude

Pair Slope Trend The fraction of increasing first differences Magnitude Richards et al. (2011)
minus the fraction of decreasing
first differences

Q31 The difference between the 3rd Magnitude Kim et al. (2014)
and 1st quarterlies

R21 2nd to 1st amplitude ratio derived Magnitude Kim & Bailer-Jones (2016)
using the Fourier decomposition

R31 3r d to 1st amplitude ratio derived Magnitude Kim & Bailer-Jones (2016)
using the Fourier decomposition

Rcs Range of cumulative sum Magnitude Richards et al. (2011)

Skew The skewness of the sample Magnitude Richards et al. (2011)

Slotted Auto Correlation Slotted auto correlation length Magnitude & time Protopapas et al. (2015)
Function Length

Small Kurtosis Small sample kurtosis of magnitudes Magnitude Richards et al. (2011)

Standard Deviation Standard deviation of the magnitudes Magnitude Richards et al. (2011)

Stetson KAC Stetson K applied to the slotted Magnitude Stetson (1996); Kim et al. (2011)
auto correlation function of the light curve

Variability Index Ratio of the mean of the square of successive differences Magntiude Kim et al. (2011)
to the variance of data points

Table A1. Caption
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Cluster Number of Notes
Light

Noise 3270 light curves with majority non-detections as well as possible variable sources and photomery affected by telescope dithering.
0 8 Sources with majority non detections and one bright detection caused by ccd anomaly.
1 7 Variable Sources.
2 36 Sources only detected during 5 point dither at beginning of observations and once during end of night dithers otherwise in chip gap.
3 23 Sources appearing 0.2 mags brighter in first 5 light curve points, a result of photometer corrections using different standard stars

for ccd corrections.
4 109 Similar photometric effects to cluster 3.
5 310 Faint noisy source bouncing around 0.4 magnitude differences
6 42 Very noisy light curves with cutouts showing possible extinction from weather in exposures
7 59 Similar photometric effects to cluster 3.
8 37 Sources near edge of cdd resulting in deeming and brightening as the source is slightly moved nearer and further from the ccd edge

during observations.
9 7 Dither affects on photometery.
10 40 Similar photometric effects to cluster 2.
11 9 Noisy light curves, possible varying sources.
12 6 Similar photometric effects to cluster 0.
13 920 Similar photometric effects to cluster 8.
14 21 Similar photometric effects to cluster 8
15 19 Similar photometric effects to cluster 8.
16 6 Similar photmetric effects to cluster 8.
17 7 Similar photmetric effects to cluster 9.
18 10 Faint defuse sources (galaxies) orsources amongst defuse galaxies
19 5 Similar photometric effects to cluster 2.
20 10 Similar photometric effects to cluster 0.
21 12 Similar photometric effects to cluster 2 with more detections (source not at close to edge as cluster 2).
22 12 Majority non-detections, 4 detections of very faint sources throughout observations.
23 26 Similar to cluster 2, with only detections at beginning of observations.
24 8 Similar to cluster 2 with only detections at beginning of observations.
25 14 Similar to cluster 2, more variance in magnitudes between detections.
26 16 Similar to cluster 2 with only detections at beginning of observations.
27 102 Flat light curves with one brighter point caused by ccd anomaly.
28 56693 Seemingly flat light curves within photometric errors.

Table B1. Clusters Identified from Antlia field light curves using HDBSCAN.

MNRAS 000, 1–8 (2019)


	Introduction
	The Deeper, Wider, Faster Program
	Data
	Methodology
	Features
	HDBSCAN
	t-SNE
	Astronomaly

	Results
	Cluster Sub Grouping
	Sub groups identifying Variable Sources
	Un-clustered Noise

	Conclusion
	Features
	Light curve traits

