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ABSTRACT

We use PixelCNN, an autoregressive model for image generation with an explicit, probabilis-
tically interpretable likelihood, to assess the capabilities of state-of-the-art hydrodynamical
cosmological simulations of galaxy formation and evolution in reproducing the optical mor-
phologies of a local galaxy sample extracted from the Sloan Digital Sky Survey. As a proof
of concept, we apply such framework to mock observations of the Illustris Project and the
lustris TNG Project.

We find that PixelCNN is able to assess the widely accepted improvement of Illustris TNG with
respect to the previous Illustris run. PixelCNN can also identify the simulated galaxies whose
morphologies are not realistic. We dissect the correlations between likelihood and galaxy
properties in SDSS, finding that larger, more irregular galaxies tend to have lower values of
likelihood. We also find that having realistic background in simulated images is fundamental
to our purpose. To conclude, we outline potential improvements to the current framework and

discuss its applications.

1 INTRODUCTION

In the recent years, cosmological hydrodynamical simulations of
galaxy formation and evolution have reached unprecedented ac-
curacy. Early efforts (e.g. Croft et al. 2009, Crain et al. 2009,
Schaye et al. 2010, Nuza et al. 2010, Di Matteo et al. 2012, Vo-
gelsberger et al. 2014) have paved the way to state-of-the art sim-
ulations (Schaye et al. 2015, Dubois et al. 2014,Davé et al. 2019,
Pillepich et al. 2018a), which broadly agree with a number of ob-
servations (only to mention a few, Genel et al. 2018, Donnari et al.
2019, Pillepich et al. 2018b, Rodriguez-Gomez et al. 2019, Tray-
ford et al. 2017, Furlong et al. 2015, Bignone et al. 2019, Dubois
et al. 2016, Kaviraj et al. 2017). As a matter of fact, however, as-
sessing the level of agreement between the morphologies of the full
populations of observed and simulated galaxies is a harder task.
Some authors (Rodriguez-Gomez et al. 2019, Bignone et al. 2019)
made use of integrated, parametric and nonparametric quantities
as diagnostics (such as the popular C — A — § — G — M) statis-
tics, Conselice 2003, Lotz et al. 2004), with the aim of describing
galaxy morphologies with only a few numbers. Such an approach
may still not grasp the full complexity of a galaxy image. In fact,
although technically all the pixels of a galaxy image are used to
retrieve these quantities, their choice may be incomplete (i.e. the
C — A - S - G - Mg spatial diagnostics may in principle be ex-
tended, see for instance Freeman et al. 2013, Wen et al. 2014, Pawlik
etal. 2016, Rodriguez-Gomez et al. 2019), and, for this reason, lim-
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ited in power (i.e. the similarity of these statistics between observed
and simulated galaxies, although informative, is no guarantee of
the overall quality of simulated galaxy properties). The key point
is that all the precious information contained in the pixels of an
image may not be fully accessible with standard techniques, which
may be a major shortcoming when comparing the morphologies of
observed and simulated galaxies. Moreover, the different statistics
provide separate pieces of information, while it would be desirable
to be able to assess the quality of a simulation using a single-valued
metric, something that has not yet been done in previous work.

An alternative approach is using Neural Networks. In partic-
ular Convolutional Neural Networks (CNNs) are able to learn the
complex, fine grained structure of an image, since they use the infor-
mation contained in pixels much more efficiently without requiring
any explicit choice of spatial diagnostics or any simplified fit to the
light profile. Therefore, they constitute a more general framework
than that provided by (non) parametric diagnostic tools. CNNs are
now being extensively used for image recognition tasks (He et al.
2015), and have also been successfully applied to astronomy in a
number of works. For example, CNNs have been employed to clas-
sify the morphology of galaxies in large galaxy surveys (Dominguez
Sanchez et al. 2018, Dieleman et al. 2015, Huertas-Company et al.
2015) as well as the well known Fanaroff & Riley (1974) mor-
phological dichotomy of radio jets of Active Galactic Nuclei (Lukic
etal. 2019). Walmsley et al. (2019) have used CNNss to identify faint
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tidal features in galaxies from the CFHTLS-Wide Survey, while Di-
mauro et al. (2018) and Tuccillo et al. (2018) have proposed the
use of a CNN to improve the fits to the light profiles of galaxies. In
Huertas-Company et al. (2019) a CNN was trained on images from
Nair & Abraham (2010) (where galaxies were assigned labels in the
form of TType by means of eyeball classification by the authors) and
then applied to both the Sloan Digital Sky Survey (SDSS, Abaza-
jian et al. 2009, Meert et al. 2015) and the Illustris TNG simulation
(Nelson et al. 2019).

All these works have used CNNs under the assumption that the
training and the test data come from the same set. This is a critical
assumption, which is not necessarily true in the case where training
is performed on observations but then the CNN is applied to simula-
tions, since we do not know a priori whether simulations agree with
observations. In fact, a test image will always be assigned a class by
the CNN, even though it looks nothing like any of the images in the
training set. In Huertas-Company et al. (2019) this issue was ad-
dressed by using Monte Carlo Dropout (Gal & Ghahramani 2016),
which consists in randomly setting to zero a number of weights in
the CNN, with the aim of selecting objects for which the network
finds a high variance in the output label. This technique allowed
the authors to identify galaxies in Illustris TNG which do not look
realistic.

A major step forward in the field of Machine Learning has been
made in the very recent years, when Deep Generative Models
proved able to generate from scratch new, extremely realistic sam-
ples. This is for instance the case of Generative Adversarial Net-
works (GANs, Goodfellow et al. 2014) and Variational Autoen-
coders (VAEs, Kingma & Welling 2014). Both GANs and VAEs
rely on the definition of a lower dimensional latent space from
which random numbers are drawn and fed to the generator (for
GANSs) or the decoder (for VAEs) which eventually will produce
mock samples the realism of which is assessed via the minimiza-
tion of a loss function. GANs and VAEs have been successfully used
in astronomy with various purposes (only to mention a few, Reiman
& Gohre 2019, Schawinski et al. 2017, Glaser et al. 2019, Zingales
& Waldmann 2018, Karmakar et al. 2018). GANs are extremely
powerful, but they lack an explicit likelihood that can be evaluated
on a single image, which is the single-valued metric we would hope
to use to compare simulations and observations. VAEs do have such
feature but their likelihood may not be easily interpretable.

Here we propose the use of PixelCNN, a deep autoregressive gen-
erative model, as a novel tool to efficiently compare simulations
and observations. PixelCNNs (van den Oord et al. 2016a, van den
Oord et al. 2016b) explicitly learn the probability distribution of the
pixel values of an image (i.e. from O to 255 in a png image) in an
autoregressive fashion (i.e. the value of each pixel is conditioned to
that of previously processed pixels). The appeal of PixelCNN is that
it features an explicit, tractable likelihood with probabilistic mean-
ing. A PixelCNN network trained on images from galaxy surveys
provides a framework to compare the likelihood of real and mock
observations. Such likelihood is a well defined metric that may be
used to assess to which extent current competing hydrodynamical
simulations of galaxy formation and evolution reproduce galaxy
morphologies and colors.

The outline of this work is as follows. In Section 2 we present
the training sample from observations (Section 2.1) and the test set
coming from simulations (Section 2.2). In Section 3 we describe the
implementation of PixelCNN and we give details about the training
procedure. In Section 4 we give the main result of our work, while
in Section 5 we describe a few tests that we have performed to better
assess the validity of our results. Section 6 is a summary of the main

critical points that need to be addressed in the near future and some
practical applications and extensions of the PixelCNN framework
are also discussed.

2 DATA
2.1 Observations

In the following we will use the SDSS DR7 (Abazajian et al. 2009)
spectroscopic sample as presented in Meert et al. (2015), Meert
et al. (2016). The Meert et al. catalogues consist of 670722 objects
the photometry of which benefits of substantial improvement both
in background subtraction and fits to the light profiles. The galaxy
stellar masses are computed adopting Sérsic+Exponential
photometric fits and the mass-to-light ratio M;,-/L. by Mendel
et al. (2014). Although the spectral energy distribution of galaxies
contains information which is critical to understand the physical
processes that galaxy formation, in this exploratory work we choose
to adopt only single band images (specifically 7-band) as a proof of
concept. We plan to expand our work to multi-band photometry in
the imminent future. We also match the Meert et al. catalogues with
the Dominguez Sanchez et al. (2018) CNN-based morphological
classification which will be useful in the following.

As for the training sample, we use the images of SDSS galaxies
that have a stellar mass My > 1010M®. An important issue that
must be dealt with when choosing the training sample is that of
the redshift evolution of the angular diameter distance driven by
cosmology. Indeed, the pixel physical scale! is a strong function of
redshift, which means that the training sample must be chosen so
that the average pixel scale is as close as possible to the pixel scale
at the redshift of the snapshot that we use for the simulations (i.e.
z ~ 0.045, see Section 2.2). Hence, we also limit the redshift range
of the SDSS training sample to 0.02 < z < 0.08, which gives a
median pixel scale < 30% larger than the pixel scale at z ~ 0.045.
This redshift cut leaves us with ~100000 galaxies in SDSS. We
found this to be a good compromise between the size of the training
sample and the effect of the strongly decreasing angular diameter
distance with increasing redshift. This choice may be critical and
subject to change in future work.

2.2 Simulations

We here use the [llustris Simulation (Vogelsberger et al. 2014, Genel
et al. 2014, Sijacki et al. 2015) and its successor Illustris TNG
(Pillepich et al. 2018a, Nelson et al. 2019). Both are hydrodynami-
cal cosmological simulations , run with the AREPO solver (Springel
2010). The Ilustris simulation has been proved capable of repro-
ducing several observables, but presents major shortcomings (both
features are summarized in Nelson et al. 2015). In the Illustris TNG
simulation significant changes have been made with respect to the
Illustris simulation (see Pillepich et al. 2018a for a detailed sum-
mary). These include a better numerical resolution, modelling of
magnetic fields, the substitution of the bubble mode AGN feedback
at low accretion rates (Sijacki et al. 2007) with a kinetic AGN feed-
back (Weinberger et al. 2017), a modification of the implementation
of galaxy-wide winds, updated mass yield from star particles, and
injection of r — process material from neutron star-neutron star
mergers (Naiman et al. 2018).

Uje. kpe/pix
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We here aim to compare the Illustris and [llustris TNG simulations
with available observations by means of a novel technique based
on a deep learning framework to assess the widely recognised im-
provements featured by Illustris TNG with respect to the original
INlustris simulation (e.g. Pillepich et al. 2018b, Nelson et al. 2018,
Rodriguez-Gomez et al. 2019, Donnari et al. 2019). In both simu-
lations we select galaxies with M4, > IOIOM@2 in the snapshot
number 95 at z ~ 0.045, for a total of ~ 12000 galaxies each. The
images are processed with a joint use of the radiative transfer code
SKIRT (Baes et al. 2011, Camps & Baes 2015), the nebular mod-
elling code MAPPINGS-III (Groves et al. 2008) and the Bruzual
& Charlot (2003) GALAXEV stellar population synthesis code and
are originally presented in Rodriguez-Gomez et al. (2019). Briefly,
each stellar particle in either simulation (which represents a coeval
stellar population) is modelled with GALAXEV for stellar particles
older than 10 Myr, while younger stellar particles are treated as a
starbursting population with MAPPINGS-III. To model dust, it is
assumed that the diffuse dust content of each galaxy is traced by
the star-forming gas, that the dust-to-metal mass ratio is constant
and equal to 0.3 (Camps et al. 2016), and that dust is a mix of
graphite grains, silicate grains, and polycyclic aromatic hydrocar-
bons (Zubko et al. 2004). Galaxies are observed along a random
line of sight. We refer the reader to Rodriguez-Gomez et al. (2019)
for further details.

2.2.1 Realistic images from simulations

When comparing images from simulations and observations, it
is essential that the mock observations are performed with the
same level of realism that is found in galaxy surveys. Bottrell
et al. (2017a) and Bottrell et al. (2017b) presented RealSim, an
algorithm that enables such procedure. Briefly, with RealSim it is
possible to place a galaxy from a given simulation, processed with
radiative transfer as explained above, in a real SDSS field. The
mock galaxy will also be convolved with the Point Spread Function
of that particular field; the effects of shot noise and cosmological
surface brightness dimming are also included. For more details
about RealSim, we refer the reader to the original papers.

3 PIXELCNN

PixelCNN (van den Oord et al. 2016a, van den Oord et al. 2016b)
is an autoregressive generative model with an explicit likelihood,
namely, the likelihood a given pixel is assigned is conditioned on all
the previous pixels of the image (which sometimes are collectively
called "context"), so that

P(X) = TN P(X; X i 1). 1)

Here P(X;|X1._;—1) is the conditional probability distribution func-
tion of pixel i evaluated at X;. Eq. 1 models explicitly the likelihood
of the training sample. In the following we will use the negative
log-likelihood, which is less prone to floating point limitations,
NZ
£ =-1og(P(X)) = = > log(P(X;|Xy__i-1) )
i=1

The above ansatz imposes the choice of an ordering for the
pixels. We follow a prescription according to which the image

2 This is the same mass cut performed in SDSS.
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is scanned from top left to bottom right, row by row. This is a
standard implementation of PixelCNN that takes advantage of
the way convolutions are typically implemented in deep learning
frameworks such as TensorFlow and PyTorch. The autoregressive
nature of PixelCNN is achieved by means of a particular type of
convolutions that mask the pixels to the right and bottom of the
current pixel, so that the network is forced to learn the relationship
between each pixel and the previous context only (van den Oord
et al. 2016a,van den Oord et al. 2016b).

We here adopt the Pixe1CNN++ architecture proposed by Sali-
mans et al. (201 7)3 interfaced with a higher level Tensorflow API*,
Briefly, Salimans et al. adopt a fully convolutional autoencoder-
like architecture, with three downsampling and three upsampling
stages respectively, where downsampling and upsampling are im-
plemented using strided convolutions 7. Each stage consists of an
adjustable number of Gated Resnet layers (van den Oord et al. 2016a,
He et al. 2015), which entail zero-padding convolutions to preserve
dimensionality. Stages in the downsampling and upsampling parts
of the network with the same dimensionality are connected with
shortcut connections as in Ronneberger et al. (2015), to ensure that
part of the information lost in the downsampling is recovered. We
refer the reader to Salimans et al. (2017) and van den Oord et al.
(2016b), van den Oord et al. (2016a) for further details of the im-
plementation.

Obviously, not all images will have the same likelihood. Rather,
Pixel CNN maps a distribution of images into a distribution of like-
lihoods. This feature is extremely powerful, since it allows to col-
lapse the complexity that characterizes images into a single-valued
function. Such property is particularly amenable to compare two
different datasets. Indeed, a trained PixelCNN produces a distri-
bution of likelihood values for any given test set Lot (Xzesz). If
these images come from the same underlying distribution of the
training set Q, Xrest ~ Q, then Lyygin(Xerain) = Lrest Xrest)
where Ly qin(Xtrain) is the likelihood distribution for the training
set. If, on the other hand, the test set is not a realization of Q, then
LirainXtrain) # Liest(Xtest). PixelCNN may therefore be used
in principle as a tool to assess whether two datasets are consistent.
Moreover, if the distributions from which the datasets under exam
come from are similar but not identical, our framework is able to
identify candidate outliers in the test dataset. In our specific case,
the training set comes from observations, while the test set can come
from either observations or simulations.

3.1 Training the network

The images in the training sample (in the simulations), which orig-
inally were of size of 256x256 (128x128) pixels, are cropped to
64x64 and degraded to reach the size of 32x32 pixel® in order to
meet memory and time constraints. This however might be danger-
ous as we are interested in probing the fine morphological structure
of the simulated galaxies, which might get lost in the downsampling.
Such procedure might play either in favour or against simulations,
as peculiar features might be washed out (if they are isolated) or
enhanced (if they are more clustered). We also recall from Section

3 Available at https:/github.com/openai/pixel-cnn

4 Available at https:/github.com/pmelchior/scarlet-pixelcnn
5 Transposed convolutions in the case of upsampling.

6 We use the publicly available scipy .ndimage library.
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Figure 1. Likelihood distribution of training and test sets (black and orange
lines respectively). The distribution for the training set peaks at slightly
higher likelihood values than the test set, however this is expected as in any
machine learning framework the performance of the training set is always
higher than in the test set.

2.1 that the average pixel scale in the training set is roughly 30%
larger that in the mock observations of Illustris and Illustris TNG,
which might bias the network towards smaller objects, as they would
be shown more frequently during the training. As a test to address
these last issues, we plan to train the network in a narrower redshift
range and retaining the full resolution of the original images.

To train PixelCNN we use 75000 galaxies randomly extracted
from our SDSS sample, which are augmented ten times via random
rotations. The remaining objects are used as a test set to evaluate
the model. Figure 1 shows the distribution of likelihood values of
the training and test set once the model has converged. It can be
seen that the two distributions are very similar, with the training set
peaking at slightly higher likelihood than the test. This is expected,
as the performance of a trained machine on the training set is always
higher than on the test set.

4 RESULTS

Figure 2 shows the likelihood distributions of images coming from
SDSS, Ilustris and Illustris TNG. This figure constitutes the main
result of our work. It can be seen that the likelihood distribution
of Illustris peaks at a lower likelihoods and has a higher variance
than those of SDSS and Illustris TNG. The better agreement of the
likelihood distribution of Illustris TNG to that of SDSS, compared
to Illustris, is a clear sign that Illustris TNG performs significantly
better that Illustris, as widely recognised in a number of works (see
Section 1). Our results support the use of the deep learning frame-
work adopted here to compare multiple state-of-the-art simulations
and set the benchmark for the future generation of hydrodynamical
cosmological simulations.

Clearly, an eyeball assessment of Figure 2, although informa-
tive, is not yet scientifically appealing. We are now working on a
metric that may be able to formally quantify the distance between
distributions. As a preliminary test we found that the Kullback-
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Figure 2. Likelihood distribution for the test set of SDSS (orange solid line),
Ilustris TNG (teal dashed line) and Illustris (red dotted line). It is visually
clear that the distribution for Illustris TNG is much more similar to that of
SDSS than the distribution of Illustris, which peaks at a lower likelihood
and is significantly broader.

Leibler divergence is not sensitive enough, while a more classical
two sample Kolmogorov-Smirnov test is too sensitive and would
return p — value = 0. An alternative solution would be to use an
extension of the method outlined in Sautter & Barchi (2017) to com-
pute the geometric distance between histograms, which is currently
under development (P. Barchi, private communication).

4.1 The weirdest objects in Illustris and Hlustris TNG

An interesting feature of our likelihood-based framework is that it
allows to identify potential outliers in the simulations. As a prelim-
inary proof-of-concept, we identify outliers as the objects that lie at
more that three standard deviations from the peak of the likelihood
distribution of SDSS. Figures 3 and 4 show galaxies in Illustris and
Iustris TNG selected in such a way. Visually, the improvement of
the morphological features in the latter simulation compared to the
former is clear. In the following we discuss these results.

First of all, some of these low-likelihood cutouts have very bright
field stars that the network may recognise as a rare feature. We re-
call however that simulated galaxies are placed in real fields, so it is
possible that the low likelihood values for the thumbnails in Figures
3 and 4 stem from a combination of an unfortunate background
and unrealistic galaxy morphologies. Furthermore, we recall that
images lying three o below the mean of the SDSS are candidate
outliers and not necessary true outliers. Indeed, with our selection
criterion the candidate outliers may still have a likelihood consis-
tent with that of the low likelihood tail of SDSS galaxies. It would
instead be desirable to assess the probability of a galaxy being an
outlier given its likelihood value, but due to the limited time we
have not been able to explore this further. Another potential way of
improving the current strategy would be to place images from the
simulations in a range of real SDSS fields. Given that for each field
the likelihood will be different, we will select outliers as objects that
systematically lie at low likelihood.

MNRAS 000, 1-11 (2019)
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Figure 3. Illustris galaxies with values of likelihood three standard deviations below the mean of the likelihood distribution of SDSS.

5 WHAT DOES THE NETWORK LEARN?

The success of our PixelCNN framework is surely promising, but
a more thorough understanding of its inner working is needed in
order to avoid using it as a black box. We have therefore performed
some tests which we summarize below.

5.1 UMAP representation

What drives the broadness of the likelihood distributions? In other
words, why does the network attribute a lower or higher likelihood
to certain galaxies? To address this issue, we can take a step back and

MNRAS 000, 1-11 (2019)

look at correlations between the likelihood and the (non) parametric
diagnostics that are available in the Meert et al. (2015) catalogues
and the matched Dominguez Sdnchez et al. (2018) morphological
catalogue. Specifically, we use stellar mass, effective radius, axis
ratio, redshift, TType, Sérsic index and the C — A - S - G — My
parameters. Due to the high dimensionality of the problem, it is very
well possible that the different parameters have higher order corre-
lations, which would be hard to read from a traditional pair plot. A
valid alternative is to make use of UMAP (Uniform Manifold Ap-
proximation and Projection, McInnes et al. 2018), a dimensionality
reduction algorithm thanks to which it is possible to find lower di-
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Figure 4. Illustris TNG galaxies with values of likelihood three standard deviations below the mean of the likelihood distribution of SDSS

mensional projections of a high dimensional spaces. UMAP, which
is constructed from a theoretical framework based in Riemannian
geometry and algebraic topology, searches for a low dimensional
projection of the data that has the closest possible equivalent topol-
ogy. We apply UMAP to our (non) parametric catalogue of galaxy
properties and color code such embedding according to each entry
in the catalogue.

Figure 5 shows the result of the exercise outlined above for galaxies
in SDSS with 1010-5Mq < Mysqr < 1011 Mg. We show here only
the results for such mass cut because it has a richer morphological
mix than higher or lower masses (Zanisi et al. 2019 submitted),

which turns out to be very important (see below). In any case, the
results are qualitatively similar for galaxies with lower and higher
mass.

The correlations between the likelihood and the parameters that we
are interested in can be found by looking at the spatial correlation
between the different panels of Figure 5. The most striking feature
is the anticorrelation between likelihood and galaxy morphology
(first row, first panel and second row, second panel respectively).
Indeed, the network assigns systematically lower likelihood values

MNRAS 000, 1-11 (2019)
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Figure 5. UMAP representation of SDSS with likelihood.

to progressively more irregular galaxies7, while earlier types tend
to be recognised as more likely than average. We show a compila-
tion of cutouts from SDSS with low and high likelihood in Figure
6. Extremely interesting is also the lack of correlation between the
likelihood and any of the classical C—A—S—G—Mp( non-parametric
diagnostics, which, along with the already noted anticorrelation be-
tween likelihood and galaxy morphology, is proof that our approach
is more general than that of, e.g., Rodriguez-Gomez et al. (2019).

Moreover, the UMAP approach can reveal more intricate, higher

7 Which have an increasing TType.

MNRAS 000, 1-11 (2019)

order, multi-variate correlations that may be extremely useful to
understand the preferences of the network. As an example, it is
possible to examine the UMAP region of galaxies with high Sérsic
index (second row, third column, left part of the panel in yellow)
and explore which values of the other parameters typically char-
acterize galaxies in that region. It can be seen that low redshift,
larger, more massive galaxies with irregular morphology (of which
the high Sérsic index signals a failed photometric fit) that sit at the
bottom of the region under exam tend to have lower values of likeli-
hood compared to galaxies at the top of that region of the plot, with
a higher redshift, more regular morphology, and lower stellar mass
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and effective radius (which are fit with a high Sérsic index because
they truly are Early Type Galaxies). On the other hand, not all large
galaxies are unlikely. Indeed, it can be seen that earlier types with
lower redshift and large sizes have the highest likelihoods, possibly
because they also entail axis ratios close to one (i.e. they are perfect
spheroids).

We have given only a couple of examples of how to read Figure
5, but we encourage the reader to explore the multiple, interesting
correlations that are shown there.

5.2 Additional tests

It is instructive to feed the network images that the network is not
supposed to recognise well. Below we present two experiments
which allow us to dive deeper in the details of the inner working of
PixelCNN.

5.2.1 Feeding sky background to the network

As a first experiment, instead of evaluating the likelihood of galax-
ies, we evaluate that of sky background. To do so, we use the top
left corner of all our original (i.e. not cropped) SDSS images. As
an additional test, we get rid of background sources in a significant
amount of "corners" by requiring that less than 1% of the pixels
in an image feature values above the 99.7 percentile of the average
noise of SDSS, which was computed from a sample of visually in-
spected sourceless "corners". A

Figure 7 shows the result of such experiment. It is interesting to see
that the distribution of likelihood of the sky background L, has
the same width of that of galaxies, but it is shifted to lower likeli-
hoods. We recall that the likelihood mentioned here and throughout
the paper is really the /og-likelihood, which is the sum of the /og-
likelihoods of all the pixels (see eq. 2). Therefore, most of the overall
value of the likelihood will come from the sky background, since
it constitutes the bulk of the pixels of an astronomical image. Also
interesting is that Ly is roughly as wide as that of galaxies, which
suggests that the sky background is important in determining Lg; .
This would be supported by the fact that L, considerably shrinks
if only the cutouts without background sources are retained (red dot-
ted line in Figure 7). This test shows that at least some of the width
of the likelihood distribution of galaxies must come from the diver-
sity of the sky backgrounds a galaxy may be found in, in addition
to the galaxy properties (see Section 5.1). Indeed, Figure 6 shows
that most low-likelihood galaxies lie in more crowded fields, while
the opposite is true for galaxies at the high end of the likelihood
spectrum.

5.2.2 Feeding idealistic light profiles

In previous work CNNs have been trained to find the best photo-
metric fit to a galaxy’s light profile (e.g., Dimauro et al. (2018),
Tuccillo et al. (2018)). Does PixelCNN recognise better a galaxy
or its best photometric fit? To answer this question, we use Gal-
Sim (Rowe et al. 2015) to produce images of the best photometric
fits from the Meert et al. (2015) catalogue. We use the finalflag
in the file UPenn_Phot_Dec_Models_rband.fits, ensuring that
only good fits are retained. In particular, a galaxy is fitted either by
a pure Sérsic profile, a disk profile or a Sérsic+Exponential profile
and only the best fit between the three is used. To the resulting im-
ages we also add SDSS realism with RealSim, as we do for images
from simulations (Section 2.2.1). The likelihood distribution of the

resulting images is compared to that of real galaxies in Figure 8.
Perhaps not surprisingly, the network assigns slightly higher values
of likelihood to the best fit of galaxies than to real galaxies. This
may be expected, given that the best fit of a galaxy is an idealized,
smooth profile which the network surely finds simpler to recognize.
This may seem trivial, but it is a hot topic in the machine learning
community. Indeed, it has been found that in likelihood-based ap-
proaches, as the one adopted here, similar trends in the likelihood
distributions to the one shown in Figure 8 arise when comparing
two datasets that do not come from the same underlying distribution.
For example, ? find that several networks (including a PixelCNN)
trained on the CIFAR dataset (Krizhevsky 2012) would assign a
higher likelihood to images from the SVHN dataset (Netzer et al.
2011)3. This result means that, for instance, a network assigns a
higher likelihood to an image of a number, than to that of a cat,
despite being trained on a set of images that includes cats and not
numbers (Shafaei et al. 2018). This is of course similar to what
we see in Figure 8, where L., peaks at higher likelihoods than
Lgq1 despite our network was trained on galaxies and not on their
best fit. Yet our framework comes with the advantage that there
is a correspondence between galaxy images and simpler, idealized
objects such as the best fit to their light profile, which is some-
thing that cannot be done for natural images. Our work suggests
that simpler objects (such as Sérsic profiles instead of galaxies, and
numbers instead of animals) tend to be assigned a higher likelihood
by likelihood-based generative models such as Pixel CNN. However
we are also able to show higher order complexity. In Figure 9 we
show the quantity Lgq; — Lpes, as a function of L. There is
a clear correlation, in the sense that galaxies that have lower Lg
(typically Late Type Galaxies) also have higher £.;,, that is the
network "prefers" smooth, idealized objects to more irregular mor-
phologies. Indeed, Late Type Galaxies are also characterized by an
overall high value of reduced chi square (Figure 9, right panel).
What is more surprising is that observed Early Type Galaxies are
preferred to their best fit light profile, despite having typically better
chi square values. A potential interpretation of this result is that
PixelCNN is able to pick finer details in the light profiles of Early
Type Galaxies that a classical XZ analysis is blind to. This is clearly
a matter worth exploring in future work.

6 CAVEATS AND FUTURE WORK

Future work includes both a refinement of the methodology and fur-
ther tests, and obviously more practical applications of the frame-
work outlined here:

e We plan to train the network in a narrower redshift range,
retaining the full resolution of the original images, to better tackle
the issue of the evolution of the angular diameter distance and
potential biases due to the currently adopted image degradation.

e Moreover, we need a metric to assess the simliarity between
observations and simulations. Indeed, while it is visually clear from
Figure 2 that Illustris TNG performs better than Illustris, it might
not be as clear when adding the comparison with other simulations,

8 CIFAR and SVHN are popular datasets used in the machine learning
community to validate the architecture of neural networks. CIFAR is a
collection of natural images, such as animals, plants and objects in various
flavours, while SVHN is a collection of house numbers gathered from Google
Street View images.

MNRAS 000, 1-11 (2019)
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Figure 6. Left: galaxies with low likelihood (Lg 4 ~ 6287.5) in SDSS. Right: galaxies with high likelihood (Lgq; ~ 6974) in SDSS. It can be seen that
galaxies with low likelihood tend to be more disky and irregular, but also have significant contamination from bright field stars. Galaxies with high values of
likelihood tend to be smaller and less irregular, and are in less crowded fields. However, it can also be noted that some galaxies with low likelihood are very
regular (e.g. top left thumbnail in left panel), while some late type galaxies are assigned higher likelihoods (e.g. bottom left thumbnail in right panel)
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Figure 7. Likelihood distribution of SDSS (orange solid line) compared to
that of the sky background with sources (teal dashed line) and with a reduced
number of sources (red dotted line).

especially at higher redshift, where the predictions from simulations
may differ more significantly from observations.

o The selection of outliers may not be very efficient yet, as we are
currently excluding potentially interesting objects that are not too
far away from the mean of SDSS and including objects that may be
consistent with observations. Indeed, for example, at a likelihood of
~ 6400 (which is below the threshold for our outlier selection) there
is a much higher number of Illustris galaxies compared to SDSS

MNRAS 000, 1-11 (2019)
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Figure 8. Likelihood distribution of the fit to the galaxy light profile as
detailed in Meert et al. (2015) catalogue (magenta dotted line) compared to
the likelihood distribution of observed galaxies (orange solid line).

which as of now are completely missed by our outlier selection
procedure. We plan to adopt a more robust methodology.

o A related issue is that of the sky background, which is fun-
damental in determining the likelihood of simulated galaxies. As a
consequence, some non realistic galaxies may be assigned a higher
likelihood simply because of a fortunate background, and galaxies
the morphology of which would agree with observations are pushed
at a lower likelihood because of, e.g., a bright star in the field or a
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Figure 9. Correlation between the difference of the likelihood of real galaxies Lg,; and that of their best fit Lp ¢, as a function of Lg4; and color coded
by TTYpe (lef) or the fraction of fits with )(3 > 1.3 (right), that corresponds roughly to p — value = 0.25.

peculiar noise feature. We plan to address this issue by placing each
simulated galaxy in a collection of 100 fields and select the objects
that are systematic outliers.

e An obvious extension of the present work would be to apply
the PixelCNN framework to high redshift data, where competing
simulations make substantially different predictions. We plan to
compare the zoom-in suites of simulations VELA (Ceverino et al.
2014) and FIRE (Hopkins et al. 2014) to Illustris TNG50, which
entails a comparable resolution but also a much larger cosmological
box.

e We plan to explore the potential of our framework in selecting
better fits to the light profile of galaxies.

e We also aim to expand our framework to include multi-band
images. In the original Pixel1CNN++ paper (Salimans et al. 2017)
it is proposed that the three filters that characterize a color image
be modelled autoregressively by imposing that the green color be
linearly dependent from the red color with the blue color also de-
pending linearly from green and red. Given that the relationship
between the bands of an astronomical image (i.e. the Spectral En-
ergy Distribution, SED) is more complicated than a simple linear
scaling, we would like to have more freedom in the modelling of
the colors for our application. A possible solution would be to
use a Masked Autoencoder for Distribution Estimation (MADE,
Germain et al. 2015). A MADE is an autoencoder the weights of
which are suitably masked so that the input image is reconstructed
autoregressively at the output of the network, with a loss func-
tion similar to eq. 1. Such approach has the advantage that the
relationship between the filters of a colour image is learned and
not forced to be linear as in Salimans et al. (2017). Our plan is
to use a MADE to empirically model the SED of each pixel in
an autoregressive fashion. This will allow us to perform a more
detailed comparison between observations and simulations that in-
cludes also multi-band information. A preliminary version of our
PixelMADE, where we couple a MADE to PixelCNN, is available
athttps://github.com/lorenzozanisi/Kav1i2019.

o Of course our results may be somewhat dependent on the im-
plementation of radiative transfer described in Section 2.2, and this
issue may become even more important when dealing with multi-

band information. However, while this may be an issue when select-
ing outliers from the simulations, it should not be too critical when
comparing different simulations processed exactly in the same way.

e Finally, but not in order of importance, we will be able to
look at the formation histories of outliers in the simulations. This
will allow us to understand which physical processes (or numerical
artifacts) have generated such galaxies.
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