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ABSTRACT

Turbulence driven by unstable shear flows is an important process in many astrophysical systems.

Several instabilities are known to produce shear flows that are unstable to secondary “parasitic” in-

stabilities, for example the fingering instability active in double-diffusively-unstable stellar radiation

zones. Whilst most astrophysical flows have extremely high Reynolds and magnetic Reynolds num-

bers, these parasitic instabilities can occur on much smaller scales, where the effects of viscosity and

resistivity are more significant. In the context of the Kelvin-Helmholtz (KH) instability in MHD, this

regime is under-explored relative to the high-Rm counterpart. Here we present a systemic parameter

study of the Kelvin–Helmholtz (KH) instability in a shear flow with an initially uniform magnetic

field in the direction of flow. We use the pseudospectral code Dedalus to solve the 2D incompressible

MHD equations with finite resitivtity and viscosity with the shear flow maintained by a body forcing

that is constant in time and varies sinusoidally in space. We find that linear stability analysis fails to

predict the dynamical differences between low magnetic Reynolds number (Rm) flows and their higher

Rm counterparts. We demonstrate two dynamical regimes, a low Rm regime and a filament regime

in which the magnetic field is concentrated into a characteristic filament. We study how different

forms of momentum transport (Reynolds vs Maxwell stresses) compare across parameter space and

demonstrate differing trends between the two regimes.

1. INTRODUCTION

Shear flows are present in many astrophysical sys-

tems including stellar interiors (Miesch & Toomre 2009;

Witzke, V. et al. 2015), relativistic jets found in ac-

tive galactic nuclei (Alves et al. 2014), and accretion

disks (Matsumoto & Tajima 1995). Due to the high

Reynolds numbers of these systems, instabilities can

arise at the shear flow boundary (Chandrasekhar 1961;

Drazin 2002). These shear-flow instabilities drive tur-

bulence, which increases the rate that momentum and

heat are transported across the shear layer. The Kelvin-

Helmoltz (KH) instability is a shear-driven instabil-

ity that occurs when parallel flows of differing veloc-

ity have a shear strong enough to overcome stabilis-

ing effects such as buoyancy, viscosity, and magnetic

tension (Chandrasekhar 1961; Drazin 2002). In stars,

this has important effects for chemical mixing, and is a

prime candidate for explaining some abundance anoma-

lies (Brüggen & Hillebrandt 2001). Due to its relevance

to astrophysical systems the KH instability has been ex-

tensively studied, and in idealised systems is well under-

stood. However, the dynamics of this instability in the

presence of a magnetic field are more complex and less

understood, despite magnetic fields being ubiquitous in

the universe.

Currently, stellar models do not have efficient enough

transport to match observations. In Red Giant Branch

(RGB) stars at the luminosity bump, it is observed that

lithium and CNO cycle by-products continue evolving

with time, but stellar models do not predict this. This

anomalous mixing is thought to occur due to thermo-

haline mixing, also known as fingering convection (Ga-

raud 2018; Cantiello & Langer 2010). It was shown by

Harrington & Garaud (2019) that adding a background

magnetic field increases the efficiency of mixing enough

to explain these observations. As the strength of the

background magnetic field increases, the fingers become

more coherent and elongated along the vertical direction

and have a higher vertical velocity. This increase in the

vertical velocities within the fingers causes a substantial

increase in the vertical turbulent compositional fluxes.

Prior work by Brown et al. (2013) found that, without

magnetic fields, fingering convection cannot explain the

anomalous mixing. Introducing magnetic fields to these

systems leads to complex KH instabilities developing,

and the parameter regime is relatively unexplored. Here,
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we study the effect of strong resistive magnetic fields on

KH instabilities in these regimes.

Magnetic fields that are aligned with the flow have

a stabilising effect on KH instabilities due to the mag-

netic tension force (Chandrasekhar 1961), which acts as

restoring force that straightens out bent magnetic field

lines. An increased field strength reduces growth rate

and can stabilises KH altogether. The stability thresh-

old depends on the details of the system, but for ideal

MHD roughly occurs when the Alfvén speed matches

the change in flow velocity across the shear layer. Re-

sistivity, however, can break the constraint of magnetic

fields suppressing the instability. Resistivity breaks the

frozen-in constraint, and reduces the bending of mag-

netic field lines by the flow, and thus lowers the magnetic

tension. As you increase resistivity the field becomes less

frozen in which means resistivity acts as a destabilising

mechanism (Palotti et al. 2008) and can allow instabili-

ties to grow even when ideal MHD predicts they should

not.

To stabilise KH the field strength must exceed a cer-

tain threshold (Chandrasekhar 1961). Weaker magnetic

fields are still unstable to KH, but have a reduced growth

rate (Keppens et al. 1999). These fields can enhance

the generation of small scale fluctuations, thus increas-

ing mixing and momentum transfer across shear layers

(Palotti et al. 2008; Fraser et al. 2021). The magnetic

field is wound up until it reconnects, injecting energy

into smaller scale eddies which, in turn, wind up the field

until reconnection (Malagoli et al. 1996). This leads to a

cascade of energy to smaller and smaller scales. The suc-

cession of intermittent reconnection events results in the

perturbed magnetic energy to be dampened out (Palotti

et al. 2008). This causes a rapid increase in shear layer

width, thus enhancing mixing across the layer, driven

by the small scale turbulence. This destruction of the

large-scale eddies through cycles of windup and resistive

decay changes when the resistiviy is altered. The rate of

resistive decay decreases with decreasing resistivity and

thus momentum transport is increased (Palotti et al.

2008). The process is well understood for weak fields,

however it is not clear the implication that strong-field

resistive MHD has on such systems.

Many instabilities including the fingering instability,

the Goldreich-Schubert-Fricke (GSF) instability, and the

magnetorotational instability (MRI), drive sinusoidal

shear flows that can become unstable to so-called “para-

sitic” instabilities. Rather than studying the developed

shear flow on top of more complex physics like ther-

mohaline mixing and GSF instabilities, we isolate these

shear flows and look at the mixing and transport within

it. We explore how different forms of momentum trans-

port compare in a strong-field resistive MHD regime,

which has not been explored in previous work. We com-

pare momentum transport across parameter space, de-

termining how altering the strength of the background

field and the level of resistivity affects the Reynolds and

Maxwell stresses.

2. BACKGROUND AND METHODOLOGY

We use the pseudospectral code Dedalus (Burns et al.

2020) to study the evolution of a free shear layer in an

incompressible fluid with finite viscosity and resistivity,

governed by the magnetohydrodynamic (MHD) equa-

tions,

ρ0

(
∂

∂t
+ v · ∇

)
v = −∇p+

1

c
J×B + ρ0ν∇2v + F0

(2.1)

∂

∂t
B = ∇× (v ×B) + η∇2B (2.2)

∇ · v = 0 (2.3)

∇ ·B = 0, (2.4)

where ρ0 is the density, v is the fluid velocity, p is the

pressure, c is the speed of light, J = ∇×B is the current

density, B is the magnetic field, ν is the viscosity, η

is the magnetic diffusivity, and F0 represents external

body forces. We consider periodic boundary conditions,

and an initial, uniform magnetic field in the horizontal

direction, B0 = B0x̂. Here, we consider a forcing of the

form

F0 = F0 sin(k0z)x̂, (2.5)

that maintains an unstable shear flow, without which

the turbulence would decay. This is a time constant,

spacial sinusoidal body forcing, and the shear flow it

maintains is referred to as “Kolmogorov flow”.

The non-dimensionalisation used follows Cope et al.

(2020) where the reference velocity, [U ], is constructed

by assuming a dominant balance between v ·∇v and the

forcing term. Using k0 as the reference length scale, the

reference velocity is defined as,

[U ] =

√
F0

k0
. (2.6)

In this non-dimensionalisation the flow amplitude is 1 in

the turbulent state where forcing balances the inertial

term. Conversely, in the laminar solution (the unstable

equilibrium solution where there are no perturbations
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and forcing purely balances dissipation, not inertia) has

an amplitude of Re, not of 1.

Using equilibrium field strength B0 as the reference

magnetic field and the reference veloity defined above

leads to the following non-dimensionalised equations,(
∂

∂t
+ ṽ · ∇

)
ṽ = −∇P̃ +HBJ̃× B̃+

1

Re
∇2ṽ+ sin(z)x̂

(2.7)

and
∂

∂t
B̃ = ∇× (ṽ × B̃) +

1

Rm
∇2B̃, (2.8)

where non-dimensional fields are denoted with ·̃, and

non-dimensionalization of coordinates x and t is implied.

Henceforth, the notation ·̃ is dropped for convenience.

The strength of the background field HB is controlled

by the parameter

HB =
v2A

[U ]
2 ∝

B2
0

F0/k0
. (2.9)

where vA is the Alfvén velocity. Thus, increasing the

background field strength increases HB and therefore in-

creases the contribution of the Lorentz force in Eq. (2.7).

For this system the ideal MHD threshold for stabilising

KH is HB = 0.5. The Reynolds number, Re, describes

how turbulent or laminar the flow is and is defined as,

Re =
[U ]

k0ν
=

√
F0

k
3/2
0 ν

. (2.10)

The magnetic Reynolds number, Rm, is defined as the

ratio of the magnetic induction to magnetic diffusion,

Rm =
[U ]

k0η
=

√
F0

k
3/2
0 η

. (2.11)

Since the magnetic Reynolds number alters the resistive

MHD term in the induction Eq. (2.1) it thus alters the

resistivity of the system: a higher Rm results in a lower

resistivity. Re and Rm are related through the magnetic

Prandtl number Pm which determines the ratio of the

viscous diffusion rate to the magnetic diffusion rate,

Pm =
ν

η
. (2.12)

2.1. 2D case

In the 2D case the streamfunction φ and flux function

ψ may be defined such that v = ŷ×∇φ and B = B0+ŷ×
∇ψ (where B0 = x̂). This makes ∇2φ the y component

of vorticity, and∇2ψ the y component of current density.

Then the equations become:

∂

∂t
∇2φ+

{
∇2φ, φ

}
=

H2
B

({
∇2ψ,ψ

}
+∇2∂xψ

)
+

1

Re
∇4φ+ cos(z)

(2.13)

∂

∂t
ψ = {φ, ψ}+ ∂xφ+

1

Rm
∇2ψ (2.14)

(where {f, g} ≡ ∂xf∂zg − ∂zg∂xf).

We consider an initial flow in the x̂ direction that

varies in the ẑ direction. We solve these with an ini-

tially uniform magnetic field in the direction of the flow,

B = B0x̂. The control parameters HB , Re, Pm, were al-

tered, with values ranging from 0.1-3.0, 10-150, and 0.01

to 2 respectively. This results in a magnetic Reynolds

number range from 0.01 to 200.

We use the pseudospectral code Dedalus (Burns et al.

2020) to study the evolution of the shear flow. We use

Fourier spectral bases in both the x and z directions,

with periodic boundary conditions on all sides. We use

a box size of 8π × 10π, which is sufficient to capture

multiple unstable Fourier modes, and a resolution of

128×256.

The strong-field resistive regime of parameter space is

relatively unexplored. In order to aid the exploration,

linear stability diagrams were used, an example of which

is shown in Figure 1. Figures 1a and 1b show the maxi-

mum growth rate for the unstable mode and the kx value

for which this occurs respectively as the Reynolds num-

ber and HB are varied for Pm=0.01. Similarly Fig 1c

and 1d also show this, but for a Pm equal to 0.5. These

growth rates and kx values correspond to perturbations

about U = sin(z) and B0 = x̂. The input parameters

were chosen such that they fall in the regions of these

graphs that have a large growth rate, which can be seen

in Figure 2. Whilst the system is still unstable in the

purple regions of the plots, the growth rates are small

and the kx for which they occur are also small. This

means it requires a large box size in order to capture

the unstable mode, which is more computationally diffi-

cult. These regions of parameter space will be explored

in future work, but this project focuses on those param-

eters that fall within the larger growth rate regime.

At higher Reynolds number in Fig 2a and 2b the in-

stability transitions to the low growth rate regime at

HB = 0.5. At lower Reynolds numbers however, the

critical HB for which this transition occurs is much

larger. This due to the resistivity being able to break

through the constraint and produce instabilities where
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Figure 1: Results from linear stability analysis for two different magnetic Prandtl numbers Pm=0.01 (top) and

Pm=0.5 (bottom) showing the maximum growth rate (left), and the kx it occurs at (right). Note that the x-axis here

is Reynolds number. For Pm=0.01, Rm can reach low enough values such that resistivity can break the constraint

allowing relatively large growth rates at HB > 0.5, whilst Pm=0.5 does not demonstrate this.

ideal MHD would not. If this were ideal MHD (i.e no

resistivity) the peak at low Reynolds number would not

occur. This can be seen in Fig 2c and 2d, where Pm=0.5

rather than Pm=0.01. Here the critical HB remains at

0.5 or less regardless of the Reynolds number. A small

deviation from this happens at high Re where there are

some unstable modes at a relatively large kx occurring

above HB = 0.5 (shown as a small bump starting at Re

≈ 160 in Fig 2d). This does not exist in ideal MHD and

is something we will explore in future work.

In the chosen non-dimensionalisation, the resistive

term in Eq 2.8 has a factor of 1/Rm. This means increas-

ing the magnetic Reynolds number decreases the effect

of the resistivity and the system acts more like ideal

MHD. Since Pm=0.5 in Fig 2c and 2d, the Reynolds

number cannot get low enough such that the resistiv-
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Figure 2: Input parameters for each simulation as a

function of Rm and HB with the colour scale denoting

Pm. Note that higher values of HB can be achieved

for lower values of Rm due to resistivity breaking the

instability constraint.

Figure 3: Horizontally averaged velocity profile for

Pm=0.5, HB=0.2, Re=50.

ity can break the instability constraint resulting in the

critical HB staying constant. This is why in Fig 1 the

simulations ran at low Rm can have a large HB whereas

those at higher Rm stay below HB = 0.5.

3. RESULTS AND DISCUSSION

3.1. Extracting true values of HB and Rm

The dimensionless numbers HB and Rm, Eq. (2.9)

and Eq. (2.11), respectively, are defined in terms of a

reference velocity. In the turbulent state, the flow speed

defined in Eq. (2.6) is not the most relevant flow speed

to use. The rms flow speed has contributions from mean

flow and from fluctuations, so this is also not ideal. In

order to extract the true flow speed we look at the hori-

zontally averaged u profile for each simulation, an exam-

ple of which is shown in Fig 3, which is near sinusoidal.

We extract the sinusoidal component using a Fourier

transform to use as the true reference flow speed. The

true values of HB and Rm are thus defined as,

HB =
HB(input)

U2
true

and Rm = Rm(input)×Utrue. (3.1)

From this point onwards all HB and Rm values quoted

are the true values, and results are often reported in

terms of the product HBRm, motivated by anticipated

trends in the limit of low Rm (Davidson 2016, and P. Ga-

raud, private communications).

3.2. Dynamical Regimes

When looking at the linear stability diagrams it is

not obvious that the dynamics of these systems really

change. Other than the peak at low Rm, there are

not any major differences in growth rate or the kx for

which the unstable mode occurs. Fig 3 shows a snap-

shot of the non-linear dynamics for two very different

areas of parameter space, with Fig 3a and 3c showing

the magnitude of the magnetic field, and Fig 3b and 3d

showing the corresponding streamfunction. This shows

how much the dynamics vary over the parameter space.
The top panel is in a low Rm regime, with Pm 0.01,

Re=10, and HB = 1 whereas the bottom panel is not

with Pm=0.5, Re=150, and HB=0.25. In the low Rm

regime the magnetic field strength oscillates about 1 and

has no defined features or dominant directions. In con-

trast, the magnetic field at higher Rm shows a strong

filament of magnetic field just above the centre of the

box. This filament moves slightly with the flow and is

not disrupted for the duration of the simulation. It is ro-

bust to increasing box size, both in the x and z directions

and occurs when HBRm ≥ 1. This regime of parameter

space is thus named the filament regime. Comparing the

streamfunction snapshots, the low Rm simulation is less

turbulent, with fewer eddies, which is most likely due

to the large contrast in Reynolds number between the

simulations. The striking difference in the dynamics of

the two regimes indicates that non-linear simulations are
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(a) Magnetic field in the low Rm regime where Pm=0.01,
HB = 0.4, Re=q0. The magnetic field has no defining
structure and oscillates about one.

(b) Streamfunction in the low Rm regime where Pm=0.01,
HB = 0.4, Re=50

.

(c) Magnetic field in the filament regime where Pm=0.5,
HB = 0.4, Re=50. The magnetic field has concentrated
into a characteristic filament spanning the whole domain
in the x direction.

(d) Streamfunction in the filament regime where Pm=0.5,
HB = 0.4, Re=50

Figure 4: Snapshots of the magnetic field (left) and streamfunction (right) for two different regimes, the low Rm

regime (top) and the filament regime (bottom)

required to understand these systems, as linear stabil-

ity analysis fails to predict any major differences across

parameter space.

Not only are the regimes visually different, but they

also follow different trends in the kinetic and magnetic

energies. Figure 5 shows how the kinetic energy scales

with the output HBRm in different regimes. The bot-

tom left portion of the plot shows the low Rm regime,

the centre shows a transition regime where the dynamics

are more defined but do not show the characteristic fila-

ment, and the top right shows the filament regime. The

simulations that fall into the low Rm regime have a ki-

netic energy that decreases with HBRm, whereas those

that fall in the filament regime appear somewhat un-

correlated. It seems that through the transition regime,

where the dynamics have begun to have more structure

and the magnitude of the magnetic field is stronger but

has not quite formed a filament, the kinetic energy in-

creases with HBRm. Whilst the low Rm regime trend

can be explained, it’s not clear what the significance of

the trend, or lack thereof, is in the filament regime and

thus more analysis is needed.

For the low Rm regime, the dependence of the kinetic

energy on HBRm can be explained by manipulating Eq.

2.7. By taking the limit where Rm � 1, a reduced

version of the momentum equation (Eq. 2.7) can be

derived (for the full derivation see Davidson (2016)),

(
∂

∂t
+ v · ∇

)
u = −∂p

∂x
+

1

Re
∇2u+ sin(z), (3.2)

(
∂

∂t
+ v · ∇

)
v = −∂p

∂y
−HBRmv +

1

Re
∇2v, (3.3)

and(
∂

∂t
+ v · ∇

)
w = −∂p

∂z
−HBRmw +

1

Re
∇2w, (3.4)

where Eq. 3.2, Eq. 3.3, Eq. 3.4, are the x, y, and z com-

ponents respectively. Comparing to Eq. 2.7, the Lorentz



7

10°1 100 101 102

HBRm

2£ 100

3£ 100

4£ 100

6£ 100

K
in

et
ic

E
n
er

gy

10°2

10°1

100

lo
g(

P
m

)

A

A

BB

CC

Figure 5: Plot showing kinetic energy trends with HBRm in each regime. A) filament regime, B) Transition regime,

C) Low Rm regime. In the Low Rm regime kinetic energy decreases with HBRm due to drag term in Eq. 3.2-3.4.

10−1 100 101 102

HBRm

100

3× 10−1

4× 10−1

6× 10−1

2× 100

M
ag

n
et

ic
E

n
er

gy

10−2

10−1

100

lo
g(
P
m

)

Figure 6: Magnetic energy trends with HBRm. Low

Rm regime (purple) follows a steep increase with

HBRm, whilst filament regime (blue-yellow) follows a

flatter trend.

force HBJ ×B becomes an anisotropic drag term with

coefficientHBRm that only acts in the y and z directions

(just the z-direction for the 2D system). In this low Rm

limit, increasing HBRm increases the strength of this

drag term and thus reduces the amplitude of turbulent

fluctuations. This bring the mean flow closer to its lam-

inar solution, which has an amplitude of Re, in contrast

with the turbulent solution, which has an amplitude of

1. Overall, the reduction in turbulent fluctuations has

a larger effect on the total kinetic energy than the in-

creased mean flow amplitude, and thus kinetic energy

decreases with increased HBRm.

The magnetic energy follows a slightly different trend,

which can be seen in Fig 6. In the low Rm regime

the magnetic energy follows a much steeper trend with

HBRm, compared to the filament regime which has a

flatter dependency. Outside of the low Rm regime, these

points follow trends that are consistent with previous

work, in that magnetic energy scales with HBRm. In-

creasing Rm allows the field to cascade to smaller and

smaller scales, thus there is more room to hold magnetic

energy across different scales. Resistivity acts as a dis-

sipation for magnetic energy. Increasing Rm decreases

the resistivity, due to the 1/Rm dependence. The less

resistivity the system has, the less the magnetic field is

dissipated away thus resulting in an increase in magnetic

energy as Rm increases.

For the Low Rm regime it is not as obvious why the

magnetic energy follows this trend. In the reduced equa-
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Figure 7: Maxwell and Reynolds Stresses across paramerter space. Low Rm regime has Maxwell stress of zero since

Lorentz term is not present in Eq. 3.2.

tions for Rm � 1 (Eq 3.1-3.3) there is no B term. The

only magnetic term is HBRm which is acts as a factor

on the velocities. This means the magnetic energy is

not dynamically relevant quantity and does not affect

the flow the way it does in for larger Rm.

3.3. Reynolds and Maxwell Stresses

In order to see how momentum transport varies across

parameter space, the Reynolds, τu, and Maxwell, τb
stresses were analysed in each regime. These stresses

transport horizontal momentum vertically across a

layer, due to shear forces, and are defined as,

τu = −
〈
∂

∂x
φ
∂

∂z
φ

〉
x

, (3.5)

τb = H2
B

〈
∂

∂x
ψ
∂

∂z
ψ

〉
x

, (3.6)

where 〈· 〉x denotes a horizontal average.

The Reynolds stress transports momentum due to tur-

bulence. When a flow is turbulent rather than laminar,

turbulent motions drive additional momentum fluxes. A

more turbulent flow has a higher Reynolds stress and has

a net momentum transfer because of the increased mix-

ing of the fluid elements. When magnetic fields are in-

cluded, the Lorentz force also produces a shear force and

hence can transport momentum, defined by the Maxwell

stress. The two stresses evolve the mean flow 〈U〉x ac-

cording to,

∂

∂t
〈U〉x =

∂

∂z
(τu + τb) + sin z, (3.7)

where viscosity has been neglected and the cos z is the

forcing term.

Figure 7a shows that in the low Rm regime, the sim-

ulations have effectively zero Maxwell stress across the

layer. Outside of that regime in the filament regime,

the Maxwell stress increases with HBRm. This is due

to the same reason that the magnetic energy increases

with HBRm, as the field strength increases, so does the

Lorentz force, thus the shear force it provides gets larger

resulting in more momentum transport. Also, increas-

ing Rm decreases the effect of resistivity which in turn

results in an increased Maxwell stress across the layer.

Figure 7b shows the Reynolds and Maxwell stresses

in just the low Rm regime. Here it is quite clear that

the Maxwell stress in this regime is zero. This can be

explained by again looking at the low Rm equations (Eq.

3.2 - Eq. 3.4). The x equation (Eq. 3.2) has no magnetic

term, the Lorentz term only shows up in the y (Eq. 3.3)

and z (Eq. 3.4) equations. The Maxwell stress term,

by definition, appears when horizontally averaging these

equations. Since there is no magnetic term in the x

equation, there cannot be any Maxwell stress.

Figure 8 shows the Maxwell stress profile (left) in

the filament regime, for two different Reynolds numbers
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Figure 8: Maxwell stress profile (left) and snapshots of filament (right) for different Reynolds numbers Re=50 (blue),

Re=100 (orange), Re=150 (green). Location of filament corresponds to large peaks in the Maxwell stress.

Re=50 (blue), Re=100 (orange), and Re=150 (green)

alongside a snapshot of magnetic field for Re=50 (top)

and Re=150 (bottom). For a Re=50, the peaks of the

Maxwell stress profile are large at the bottom of the do-

main (z=0-10) whilst peaks are close to zero at the top

of the domain (z=15-25). Comparing that to the im-

age of the magnetic field, the location of the large peaks

corresponds to the location of the filament in the do-

main. Conversely, for Re=150 (green), the large peaks

occur at the top of the domain which is, again, where
the filament is located. Maxwell stress increases with

increasing magnetic field, and since the filament is a re-

gion of concentrated magnetic field, it has the strongest

Maxwell stress. This result is very qualitative and in

future work this will be explored further.

4. CONCLUSIONS & FUTURE WORK

Here we have presented a systemic parameter study

of a two-dimensional MHD unstable shear flow and its

evolution. We have found that linear stability analysis

fails to predict the dynamical differences across param-

eter space, and that non-linear simulations are required

for these simulations. Furthermore, we have identified

two regimes in which the dynamics and trends for kinetic

and magnetic energy along with values for the Maxwell

and Reynolds stresses differ drastically:

1. The low Rm regime, which occurs for HBRm <

1, where magnetic field strength oscillates about

one and has no defined features or dominant di-

rections. The kinetic energy decreases with the

parameter HBRm, whilst the magnetic energy in-

creases. Maxwell stresses in this regime were found

to be 0.

2. The filament regime, which occurs for HBRm ≥ 1,

where magnetic field demonstrates a characteristic

filaments spanning across the whole domain in the

x direction. The kinetic energy follows no specific

trend with HBRm. The Maxwell and Reynolds

stress sum to one in this regime.

Whilst this study shows a stark difference between the

two regimes, the results presented here are mainly qual-

itative. Future work will analyse these trends further

in order to quantify these results. The filament regime

is very interesting and so we will repeat this work in

three-dimensions to see if similar trends occur. We will

also conduct a deeper exploration of parameter space

where growth rates are much smaller but still unstable.

ACKNOWLEDGEMENTS

We would like to thank Pascale Garaud for helpful

comments on this work, and Keaton Burns for assistance



10

with optimizing Dedalus on the computing resources

used. We would also like to thank the Kavli Program

and its organisers for funding and supporting this work,

as well as offering helpful lectures, seminars, and a nice

virtual workspace. We acknowledge use of the lux super-

computer at UC Santa Cruz, funded by NSF MRI grant

AST 1828315. This work used the Extreme Science and

Engineering Discovery Environment (XSEDE) Expanse

supercomputer at the San Diego Supercomputer Center

through allocation TG-PHY210050.

REFERENCES

Alves, E. P., Grismayer, T., Fonseca, R. A., & Silva, L. O.

2014, New Journal of Physics, 16, 035007,

doi: 10.1088/1367-2630/16/3/035007

Brown, J. M., Garaud, P., & Stellmach, S. 2013, 768, 34,

doi: 10.1088/0004-637x/768/1/34
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