Open problems in compact object dynamics

Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University

www.astro.lu.se

Key ideas and open questions in compact object dynamics

Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University

www.astro.lu.se

KEY IDEA #1

Natal kicks can keep binaries together.

Guitar Nebula

Palomar Observatory

PSR 2224+65 transverse velocity of above 800 km/s

(Cordes et al. 1993)

Low-mass X-ray binaries

Neutron star kicks

(e.g. Hobbs et al. 2005)

KEY IDEA #2

The *three* Vs *conspiracy* means that kicks make an observable impact.

Cygnus X-2

Cyg X-2 is an X-ray binary containing a neutron star which has been ejected from the Galactic disc some time ago

(Kolb et al. 2000)

Locations of short gamma-ray bursts

SGRBs may originate from the merger of NS-NS binaries

See Tauris et al. 2017 for a review of the formation of NS-NS binaries

Localisations from the Swift satellite

(Church et al. 2011)

KEY IDEA #3 (open question)

Do black holes receive kicks when they are formed in core-collapse supernovae?

Black hole kicks (?)

(Repetto et al. 2012)

(Mandel 2016)

KEY IDEA #4 (open question)

Binary evolution in the field compared to evolution due to encounters in clusters. Which one dominates (in terms of the production of gravitational-wave sources)?

Producing compact binaries outside of clusters

Initial main-sequence - main-sequence binary Most massive star evolves and transfers envelope ... leaving a helium-star - main-sequence star binary Helium star explodes in the first supernova explosion ... to leave a neutron-star - main-sequence binary Second star evolves into a giant, and transfers mass unstably ... forming a tight helium-star - neutron-star binary Helium star transfers mass unstably, forming a very tight binary Finally the core explodes as a supernova, ... to leave an ultra-compact double neutron-star binary

(Church et al. 2011)

Producing BH-BH binaries in the field

(Belczynski et al. 2016)

(De Mink et al. 2016; Marchant et al. 2016)

Producing compact binaries within clusters

(eg. Davies 1995)

Offsets sometimes larger than expected

060502B - burst occurred outside host galaxy

It could be that the progenitor formed dynamically in a globular cluster.

(Church et al. 2011)

Also looking at offsets for WD-NS systems (Church et al. in prep.)

So which dominates, field or cluster?

(Common × Rare ≈ Rare × Common)

KEY IDEA #5

Encounters break up wide binaries and mop up massive stars in to hard binaries which can be very eccentric.

Encounter timescales

Cross section is given by

$$\sigma = \pi R_{min}^2 \left(1 + \frac{2G(M_1 + M_2)}{R_{min}V_{\infty}^2} \right)$$

Timescale for a given object to undergo an encounter is

$$\tau_{enc} \sim 10^{11} yr \left(\frac{10^5/pc^3}{n}\right) \cdot \left(\frac{M_{\odot}}{M}\right) \cdot \left(\frac{R_{\odot}}{R_{min}}\right) \cdot \left(\frac{V_{\infty}}{10 km/s}\right)$$

For 2+1 encounters, Rmin is roughly the size of the binary, which can be much larger than the radius of a star.

Can have situation where
$$\Gamma_{1+1}\simeq\Gamma_{2+1}$$

Possible outcomes of encounters between a binary and a single star.

Concepts concerning binary-single encounters

- Hard-soft boundary $d_{\rm hs} \simeq 6 {\rm AU} \left(\frac{V_{\infty}}{10 {\rm km/s}} \right)^{-2}$
- Soft binaries get broken up
- Hard binaries get harder
- Thermal distribution of eccentricities
- Clean exchanges: lowest-mass star ejected
- Stellar collisions occur during encounters

2+2 compared to 2+1

Cross section for some 2+2 interaction roughly same as for 2+1.

Physical collisions more common in wide binaries for 2+2 than for 2+1, as

$$\left(\frac{4}{2}(4-1) > \frac{3}{2}(3-1)\right)$$

It is common for 2+2=2+1+1.

Triples

(VanLandingham et al. 2016)

(Malmberg et al. 2007)

KEY IDEA #6

Two-body relaxation drives the dynamical evolution of stellar clusters. Core collapse may be prevented by sources of heating. Cluster evolution matters: properties determine encounter rates and retention.

A model stellar cluster

Key ideas:

Scattering between stars transports energy within a cluster (two-body relaxation).

Self-gravitating systems have a negative heat capacity.

The dynamical evolution of a cluster

An evolved stellar cluster

A competition between two processes:

Energy loss via two-body scattering from cluster core leading to core collapse.

Heating via binary-single encounters which could prevent or delay core collapse.

If binaries are tight enough they will spiral together and merge before they can heat the cluster.

BHs can heat a cluster

(Mackey et al. 2007; 2008)

KEY IDEA #7

Exotica production in stellar clusters is a complex business.

An example of how binary-single scattering can produce a tight BH-BH binary which then spirals in due to the emission of gravitational radiation

The three kicks

I) Natal black hole kicks

2) Scattering kicks

3) GR merger kicks

Not too heavy, not too light

(Antonini & Rasio 2016)

Triples again

(VanLandingham et al. 2016)

(Petrovich & Antonini 2017)

Summary:

- I) natal kicks can be helpful (e.g. LMXBs)
- 2) three Vs conspiracy (kick, orbital, orbital)
- 3) do BHs receive natal kicks?
- 4) binary evolution vs cluster engine?
- 5) encounters: break up, harden, make eccentric
- 6) cluster evolution: core collapse vs. heating

7) clusters can create compact-object coalescences