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ABSTRACT

We present the first systematic exploration of atmospheric retrievals on simulated reflected-light data

for terrestrial exoplanets. Our initial forward model can constrain three key characteristics relevant

to habitability: water vapor mixing ratio, surface pressure, and ozone mixing ratio. To examine the

feasibility of constraining these quantities with a future high-contrast instrument (e.g., a starshade

paired to NASA’s WFIRST mission), we simulate data over a range of spectral resolutions (R =

λ/∆λ = 35, 70, and 140) and qualities (signal-to-noise of 5, 10, and 20). Our noise simulations are

non-gray, and rely on a published high-contrast imaging and spectroscopy instrument model. This

investigation highlights a consistent and accurate ozone detection for an Earth-twin across nearly all

observational configurations. However, for water vapor mixing ratio and surface pressure retrievals,

we find that cloud parameterizations and assumptions are critical to making accurate inferences. We

discuss future work and improvements, including extensions to super-Earths and mini-Neptunes.

1. INTRODUCTION

The scientific field of exoplanets has been rapidly advancing since the hallmark discovery of the first planet orbiting

a Sun-like star other than our own (Mayor & Queloz 1995). Following the launch of NASA’s Kepler mission (Borucki

et al. 2003, 2011), the field has seen the discovery of thousands of transiting exoplanets and the exciting result that

planets with radii between 0.75–2.5 R⊕ are common around solar-type stars (Burke et al. 2015). Only within the

last decade have observational studies of exoplanet atmospheres seen substantial development, starting with the first

detection of an exoplanet atmosphere by Charbonneau et al. (2002). However, nearly all atmospheric characterization

studies have focused on hot Jupiters—owing to their large sizes and high temperatures—instead of the terrestrial-sized

planets that make up the bulk of Kepler’s yield.

Recently, de Wit et al. (2016) have studied the combined transmission spectra of two transiting Earth-sized planets
orbiting the ultracool dwarf TRAPPIST-1. While no gas absorption features were detected by de Wit et al. (2016), this

work highlights the improvements in signal size when terrestrial-sized transiting planets are studied around low-mass

stars. Additionally, since the Habitable Zones around low-mass stars are relatively close-in, characterization studies of

potentially habitable exoplanets around cool stars can benefit from the frequency of transit events. Unfortunately for

Sun-like stars, the Habitable Zone is located far from the star, making transit events rare and infrequent, thus limiting

the potential for atmospheric characterization. For these worlds, direct imaging is emerging as a valuable technique

for studying the atmospheres of planets at larger separations from their host star. Thus far, high contrast imaging has

been proven successful at studying atmospheres of young, self-luminous exoplanets in the near-infrared (e.g., Barman

et al. 2011; Macintosh et al. 2015). But, in the near future, NASA’s Wide-Field InfraRed Survey Telescope (WFIRST,

Spergel et al. 2013) will extend direct imaging studies to reflected light observations of cool gas giant exoplanets, and

may even push into the regime of sub-Neptune and terrestrial exoplanets (Robinson et al. 2016).

The WFIRST mission was identified as the top priority space mission in the 2010 National Academy of Sciences

decadal survey of astronomy and astrophysics.1 With its 2.4 m primary mirror and envisioned coronagraphs, WFIRST

will study the atmospheres of relatively cool planets that have been previously detected by the radial velocity technique,

and will also survey stars in the solar neighborhood for planetary companions (Burrows 2014; Greco & Burrows 2015;

1 http://sites.nationalacademies.org/bpa/bpa_049810

http://sites.nationalacademies.org/bpa/bpa_049810
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Spergel et al. 2015). Reflected light in the visible probes to atmospheric depths of up to ∼ 10 bar for giant planets

(Marley et al. 2014), which is complimentary to the low pressures probed in transit observations. The wavelength

range of 0.4 µm to 1.0 µmholds rich information about a planet’s atmosphere. We can expect methane and water

vapor absorption as well as haze absorption and cloud reflectance (Burrows 2014).

One anticipated feature/issue of the WFIRST coronagraphs will be their low optical throughput for the planetary

signal, which is expected to be ∼ 1% (Traub et al. 2016) and stems primarily from the complexities of accommodating

for WFIRST’s on-axis secondary mirror and support structures within the high contrast instruments. When noise is

dominated by the detector performance, the integration time required to achieve a given signal-to-noise ratio scales

as the square of the throughput times the planet flux. Thus, while the WFIRST coronagraphs provide raw contrast

levels appropriate for detecting terrestrial-sized exoplanets, the small size of these planets and the low instrument

throughputs make characterization impossible. If, however, we pair WFIRST with an external starshade to suppress a

host star’s light, we can increase throughput by at least an order of magnitude (Turnbull et al. 2012), thereby opening

up the possibility of characterizing sub-Neptune and terrestrial-sized exoplanets with WFIRST. To date, though, there

does not exist any systematic studies of atmospheric characterization of small exoplanets using retrieval techniques on

reflected light observations.

Marley et al. (2014) considered the spectra we can expect from known radial velocity gas giants as observed with

a space-based coronagraph. Given the diversity of cool giant planets, the model spectra have a variety of such input

assumptions as clouds, surface gravity, and atmospheric metallicity. Marley et al. (2014) also applied the retrieval

method, powered by Markov Chain Monte Carlo (MCMC), to these synthetic spectra, enabling the exploration of how

well atmospheric parameters are constrained under varying quality of data. Lupu et al. (2016) further investigated

the feasibility of characterizing cool giant planet atmospheres through retrieval, focusing on the ability to constrain

CH4 abundance and cloud properties. The systematic study of the impact of conditions like signal-to-noise ratios or

wavelength resolution is essential to quantifying the scientific return of these reflected light observations.

This work presents our extension of these techniques into the terrestrial regime. We construct a forward model with

Rayleigh scattering due to N2 and absorption from H2O and O3, characteristic features of the Earth’s atmosphere in

the visible wavelength range of 0.4 µm to 1.0 µm (see Figure 1). We retrieve for these quantities from data sets of

varying wavelength resolutions and signal-to-noise ratios. A retrieval framework such as this allows us to quantify the

uncertainties associated with the parameters and search for optimal observing conditions to achieve the scientific goal

of identifying traits associated with habitability.

Our report is structured as follows: Section 2 explains our forward model, how we generate simulated data, and

retrieval setup. Section 3 presents the retrieval results from nine sets of simulated data. We discuss our findings in

Section 4 and conclude with future work.

2. METHODS

The three essential components of our framework are simulated “observations”, a forward model, and a means of

evaluating the goodness of fit and corresponding acceptable range for parameters in our forward model. Our study

builds upon previous work by Lupu et al. (2016), which examined systematically the interpretation of simulated

direct imaging data from gas giants through Bayesian inference. In their retrievals, Lupu et al. (2016) considered the

performance of both emcee (Goodman & Weare 2010; Foreman-Mackey et al. 2013), a Markov Chain Monte Carlo

(MCMC) ensemble sampler, and MultiNest (Feroz & Hobson 2008; Feroz et al. 2009), a multimodal nested sampling

algorithm. These two methods were shown to produce consistent results, and we select emcee to sample parameter

posteriors in this initial investigation.

To generate model data, we modify the forward model presented in Lupu et al. (2016), which we tailor to terrestrial

atmospheres by including a reflective surface, Rayleigh scattering by N2, and absorption due to H2O and O3. We

evaluate the model data using emcee against simulated observed data created by combining spectra from a 3D model

of Earth (Robinson et al. 2011) with an instrument noise model appropriate for space-based direct imaging (Robinson

et al. 2016).

2.1. Forward Model

The observed quantity for reflected light from an exoplanet at a given phase (i.e., planet-star-observer) angle α is

the wavelength-dependent planet-to-star flux ratio,

Fp
Fs

= AgΦ(α)
(Rp
r

)2
, (1)
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Figure 1. Spectrum of Earth at quadrature spanning wavelengths between 0.35 µm and 1.05 µm. Prominent features include
the Rayleigh slope due to air molecules (N2and O2), the broad O3 Chappuis band between 0.5 and 0.7 µm, O2 absorption at
0.76 µm and 0.63 µm. Other features are attributed to H2O, especially at 0.94 µm.

where Ag is the geometric albedo, Φ(α) is the phase function, Rp is the radius of the planet, and r is the orbital

separation. The phase function describes brightness at different phase angles and it is normalized to unity at full

phase, α = 0◦. The geometric albedo is the ratio between the measured light from the planet at full phase to that

from a perfectly reflecting Lambert disk with the size of the planet. Note that a Lambert surface scatters isotropically.

We denote the product of the geometric albedo and the phase function as the phase-dependent “reflectance” of the

planet. In general, the geometric albedo encodes the pressure-dependent composition (or “state”) of an atmosphere,

while the phase function represents the scattering properties of the atmosphere (Burrows 2014).

We adopt a well-known albedo code to model the reflected light spectrum of an Earth-sized planet. Our albedo

code has been applied to a large variety of planetary bodies over the last two decades (see McKay et al. 1989; Marley

et al. 1999; Cahoy et al. 2010), thereby demonstrating the flexibility of this model. Most recently, Lupu et al. (2016)

modified the code to include parameterized 1- and 2-layer cloud models.

In our albedo code, the illuminated hemisphere of the planet is divided into latitude/longitude patches, which we

sample at a resolution of 100 grid points. The wavelength-dependent brightness of each patch is determined using

a plane-parallel radiative transfer solver (Toon et al. 1989). The solver incorporates two angles, both defined with

respect to the local normal: θ0, the incident angle for the stellar irradiance; and θ1, the observed scattering angle,

directed towards Earth (or the observer). Every plane-parallel patch has an atmospheric column of 60 layers.

The geometric albedo code computes a spectrum by integrating over the outgoing intensities from each facet of

the surface. The integration is through Chebyshev-Gauss under two-dimensional planetary coordinates as outlined

by Horak (1950) and Horak & Little (1965). The radiative transfer is calculated individually for each column of

atmosphere. The source function involved is approximated by the two-stream solution to a diffuse, angle-independent

radiation field (Toon et al. 1989). As described in Cahoy et al. (2010), two-stream quadrature is used to determine

the upward and downward diffuse fluxes, producing the column intensity for the integration that produces the albedo

spectrum.

For simplicity, we maintain the atmosphere as isothermal with a temperature of 250 K, as temperature has little

effect on the reflected-light spectrum of each patch. It is important to note that we assume a cloud-free atmosphere for

this investigation. The chemical abundances in our forward model atmosphere are constant as a function of pressure,
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and we adopt a uniform acceleration due to gravity of 9.8 m s−2. At the base of the atmosphere, we establish a

reflective surface by assigning a Bond albedo of ω = 0.3. The Bond albedo represents the power in scattered, outgoing

radiation compared to the amount of incident radiation. For the inhomogeneous surface of Earth, featuring oceans and

continents, the bond albedo is wavelength-dependent, but an approximate average is 0.3 (e.g., Pallé et al. 2004). This

value also encompasses the cloudy and clear scenes on Earth – it is higher than that of a completely clear atmosphere

and acts as a way to offset our cloud-free assumption.

Before the addition of atmospheric features, we undertook a test to check that our reflective lower boundary condition

was implemented correctly. Without atmospheric absorption or scattering, our assumption of a Lambertian surface

would imply that our albedo code should follow the analytic Lambertian phase function:

ΦL(α) =
sinα+ (π − α) cosα

π
. (2)

For a Lambert sphere the geometric albedo relates to the Bond albedo as Ag = 2
3ω. We have defined ω = 0.3 and

calculate the reflectance for different phase angles and normalize by the value at α = 0◦ to construct the model phase

function. Figure 2 compares the model phase function with the analytic phase function and shows complete agreement,

confirming that our treatment of the surface is correct.
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Figure 2. Comparing our model phase function to the analytic Lambertian phase function (Equation 2). No atmospheric
absorption or scattering are present in the forward model. We set the surface Bond albedo to 0.3, and normalize by the
reflectance at phase angle α = 0◦.

To further build an Earth-like atmosphere, we update our albedo code to include H2Oand O3, which are dominant

absorbers, and N2, which is the primary Rayleigh scatterer. The absorption opacities are generated line-by-line from

the HITRAN2012 line list, and span 0.3 µm to 1.0 µm. The Rayleigh scattering is treated according to Hansen &

Travis (1974) with constants to describe the scattering properties of N2 from Cox (2000).

2.2. Simulated Data

Our simulated observations are of an Earth-twin orbiting a Sun-like star. High spectral resolution simulated data

come from a sophisticated three-dimensional (3D) model known as the NASA Astrobiology Institute’s Virtual Planetary

Laboratory 3D line-by-line, multiple scattering spectral Earth model (Robinson et al. 2011). The Robinson et al. (2011)
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tool can simulate images and disk-integrated spectra of Earth from the ultraviolet to the infrared. It has been

validated against observed data taken by NASA’s EPOXI mission, which included disk-integrated near-infrared spectra

and visible wavelength photometry. Because our observations of exoplanets only yield disk-integrated spectra, it is

advantageous to have an accurate model that allows for arbitrary viewing geometry and phases.

Atmospheric features of the Robinson et al. (2011) model include Rayleigh scattering due to air molecules, realistic

patchy clouds, and gas absorption from a variety of molecules, including H2O, CO2, CH4. Surface coverage of different

land types (e.g., forest, desert) is informed by satellite data, and water surfaces incorporate specular reflectance of

the Sun. A grid of thousands of surface pixels are nested beneath a grid of 48 atmospheric pixels, all of equal area.

For each surface pixel, properties from the overlying atmospheric pixels are used as inputs to a full-physics, plane-

parallel radiative transfer solver— the Spectral Mapping Atmospheric Radiative Transfer (SMART) model (Meadows

& Crisp 1996). Intensities from this solver are integrated over the pixels with respect to solid angle, thereby returning

a disk-integrated spectrum.

We simulate noise in our observations using an instrument model developed by Robinson et al. (2016) for space-based

direct imaging missions. For simplicity, we only include read noise and dark current, as (Robinson et al. 2016) showed

that detector noise will be the dominant noise source in WFIRST spectral observations of exoplanets. Here, then, the

signal-to-noise ratio is simply,

SNR =
cp × tint√

(cd + cr)× tint
, (3)

where tint is the integration time, cp is planet count rate, and cd is the dark noise count rate, and cr is the read

noise count rate. More rigorously, it can be shown that SNR ∝ qAgΦ(α)Bλ, where q is the wavelength-dependent

detector quantum efficiency and Bλ is the stellar Planck function. Thus, when scaled to a given signal-to-noise ratio

at a certain wavelength, the calculation of the signal-to-noise ratio at other wavelengths is independent of the imaging

raw contrast or throughput of the instrument. As mentioned earlier, though, the integration time required to achieve

a given signal-to-noise ratio is proportional to instrument throughput squared, implying that the types of observations

discussed here may only be achievable if WFIRST were paired to a starshade. For our study, we will consider multiple

wavelength resolutions, R, and signal-to-noise ratios. Because the signal-to-noise ratio is dependent on wavelength, we

reference our values to be at 550 nm for all resolutions.

2.3. Retrieval

A retrieval operates by first taking a set of input parameters to calculate a noise-free, high resolution spectrum via

the forward model. This spectrum is then convolved with an instrument model to the resolution of the (simulated)

observations for comparison. We evaluate the fit by determining the likelihood, which describes the probability of the

observed noisy data given the forward model and the set of input parameters. This procedure is repeated many times

in order to adequately sample the posterior distributions of the model parameters. A standard method of doing so is

via a Markov chain Monte Carlo, which we implement using emcee.

With each iteration of the posterior sampling, we use a different set of input parameters drawn from their respective

prior distributions. The input parameters for our retrieval model are the H2O abundance, the O3 abundance, and a

surface pressure scale factor, P0. The scale factor is a multiplicative factor applied to a normalized 60-layer pressure

grid that is 1 bar at the surface. Surface pressure is a proxy for the amount of N2 present because this is the sole

Rayleigh scatterer in our forward model. The higher the surface pressure is, the more N2 there is to produce scattering,

thus changing the extent of the slope seen in Figure 1. All three prior distributions are flat. For the H2Oabundance,

the prior extends from a volume mixing ratio of 10−8 to 10−1. For O3, the prior covers 10−10 through 10−1. The

upper limit is set such that these molecules do not contribute to Rayleigh scattering. The N2 abundance is calculated

by subtracting the abundances of H2O and O3 from 1. The prior distribution for P0 has a range of 10−3 to 100.

2.3.1. Validating the retrieval

We validate our retrieval process by generating three sets of data with our forward model (i.e., not the 3D spectral

Earth model) for an Earth-like planet seen at full phase (α = 0◦) and adding noise using the instrument model as

described above. The input values we chose to generate the data are H2O = 3×10−3, O3 = 7×10−7, and P0 = 1 such

that the surface pressure is 1 bar. These abundance values are characteristic of a standard Earth model atmosphere

with vertically- and spatially-varying water vapor mixing ratios (McClatchey et al. 1972). Our three data sets have

resolutions of R = 35, 70, and 140 respectively, all with SNR = 20. Figures 3 illustrates the posterior distributions

for R = 70. In all three cases, we accurately recover the input values, with an increase in precision as resolution

increases.
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Figure 3. For simulated data using the forward model (R = 70, SNR = 20). Posterior distributions and correlations for H2O,
O3, and P0. The blue solid lines indicate the true input values.

3. RESULTS

Using the method described in Section 2.2, we create nine sets of data to retrieve upon, all covering 0.4 µm to

1 µm for an Earth-like planet seen at the quadrature phase (α = 90◦) around a Sun-like star. We consider three

resolutions, R = 35, 70, 140; for each resolution, we consider three signal-to-noise ratios, SNR = 5, 10, 20. The

range of resolutions and signal-to-noise ratios allows an exploration of the data conditions under which we can infer

robust quantities.

In order to determine if the retrievals return robust estimates, we need to establish appropriate “input” or comparison

values from a realistic state of Earth’s complex atmosphere. Because our final simulated data are not generated from our

forward model but instead a 3D model, there is no definitive single “true” value for each of our inputs. A more realistic

comparison would be against a range for the mixing ratios. We consider mixing ratios from the InterComparison of

Radiation Codes in Climate Models (ICRCCM, Ellingson & Fouquart 1991) for the mid-latitude summer atmosphere,

which is an approximation for the average state of Earth. We construct “contribution functions” or Jacobians for H2O

and O3 based on perturbations to the SMART model’s radiative transfer. Each perturbation to a mixing ratio results

in changes in the optical depth and outgoing reflected flux. Figure 4 shows the changes in reflectance with respect to

changes in mixing ratios as a function of pressure and wavelength. For H2O, the molecular abundances over the range

where the contribution functions peak is 3× 10−3 to 2× 10−2, with the dominant contribution at 1× 10−2. Similarly,

for O3, we should expect to detect a range of 2× 10−6 to 8× 10−6, with the dominant contribution at 4× 10−6.

In Figure 5, we see the resulting spectral fits to the data after the retrievals, highlighting the cases of SNR = 5, 10, 20

for R = 35, 70, 140 respectively. As seen in Figure 1, H2O has a prominent absorption feature at 0.94 µm. In the

low and medium resolution cases (R = 35, 70), there is a large spread in fits to this feature, suggesting H2O is not

well-constrained. Figure 6 shows the posterior distributions for all nine retrievals for water vapor mixing ratio. Except
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Figure 4. Left: The change in reflectance due to changes in mixing ratio of H2O. Right: The change in reflectance due to
changes in mixing ratio of O3. These show where in the atmosphere (pressure-wise) and wavelength space that changes in the
mixing ratio of each molecule lead to fractional changes in reflectance.

for the upper limit in the case of R = 35, SNR = 5, there is detection of water vapor, with increasing confidence as

the resolution and signal-to-noise ratio improve. When compared to the expected range as determined above, there is

a bias to mixing ratios 0.5 – 1.0 order of magnitude lower.

Figure 7 presents the posterior distributions for all nine cases for the surface pressure. All distributions overlap, and

there is detection across all resolution and SNR combinations. However, once again there is a bias for the retrieved

quantity to be lower than the expected value—the retrievals commonly return a value near 0.3 bar instead 1 bar, which

is the true value for Earth.

Our third and final retrieved parameter is O3 mixing ratio. Unlike the previous two, the posterior distributions

fall within the expected range as seen in Figure 8. As resolution and signal-to-nosie ratio improve, there is accurate

convergence to the peak value of 4× 10−6 determined from the Jacobian.

Figures 6 through 8 all include a summary panel for the relevant retrieved parameter that only displays the posteriors

distributions for the case of SNR = 10 at the three resolutions. The highest SNR of 20 may be unrealistic to obtain, so

it is encouraging that at the medium SNR of 10, we have constrained posterior distributions for all parameters. Even

in the case of SNR = 5, there is only one instance of an upper limit. However, we note that the comparatively low

values obtained for H2O and surface pressure likely indicate that our forward model may be overly simplified. Based

on the summary panels, we see that minimal improvements are made by going to the high resolution of R = 140,

especially in the case of O3 for which there are accurate posterior distributions at all lower resolutions. This suggests

that a high resolution instrument is not necessary to be able to detect these quantities of interest.

4. DISCUSSION

Our retrieval results show bias toward lower values for both water vapor mixing ratio and surface pressure. This

is likely the result of our cloud-free atmosphere assumption. Recall that the simulated observations are produced by

a 3D model which includes realistic patchy clouds. These clouds can act to “truncate” the atmospheric column over

more than half of the observed disk. As a result, we effectively see a decreased water vapor column abundance, as

compared to a clear-sky only model. Furthermore, the water vapor contribution functions in Figure 4 indicate that

our abundance estimates would be strongly affected by clouds, which usually occur between pressures of 0.3 and 0.8

bar.

Because surface pressure is indicative of the amount of N2 that can do Rayleigh scattering, decreased Rayleigh

scattering optical depth implies a lower retrieved surface pressure. As was the case with water vapor, the presence of

clouds can cut short the depth to which we can see into the atmosphere. A scattering optical depth of unity is reached

in the clouds before we reach an optical depth of unity for Rayleigh scattering. In other words, the Rayleigh slope in

the observations is a superposition of the weak Rayleigh slope that occurs for cloudy scenes and the strong Rayleigh

slope that occurs for clear-sky scenes. Thus, when fit with a cloud-free forward model, the average surface pressure

we retrieve will be less than 1 bar, and is typically ∼ 0.3 bar.

Clouds did not bias our retrieval of O3 because, as Figure 4 shows, O3’s contribution functions peak above where

clouds lie in the atmosphere. The accurate retrieval of O3 is an exciting finding, since O3 is a biosignature gas that
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Figure 5. Simulated data for R = 35, 70, 140 at SNR = 5, 10, 20 respectively, overplotted with the median fit (blue solid line)
and 1σ spread (red) and 2σ (pink) spread in fits from their corresponding retrievals.

may indicate the presence of life. While the presence of ozone alone is not a definitive sign of life, it can be associated

with the detection of other key biosignature gases to argue for biological activity on a planet.

Finally, we note that our retrieved surface pressures are a critical indication of planetary habitability. Typically, a

planet is defined as habitable if it can maintain stable surface liquid water. Given ∼ 0.3 bar of pressure, liquid water

would be stable over a wide range of temperatures, spanning its freezing point at 273 K to its boiling point at that

pressure (350 K).

4.1. Summary and Future Work

We have developed the first retrieval framework to study reflected light data from terrestrial planets. Our forward

model assumes a cloud-free atmosphere and features Rayleigh scattering due to N2 as well as absorption due to

H2O and O3. We implement the emcee MCMC sampling suite to construct our posterior distributions. Anticipating

the launch of NASA’s WFIRST mission, which may be paired with an external starshade, we examine our ability

to detect H2O, O3, and surface pressure as a function of spectral resolution (R = 35, 70, 140) and signal-to-noise

ratio (SNR = 5, 10, 20). Simulated observations for these studies come from a well-tested 3D spectral model of
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Figure 6. Posterior distributions for H2O overplotted with the expected model range. There is a bias in the distributions to
lower mixing ratios.Top, left: R = 35 at SNR = 5, 10, 20. Top, right: R = 70 at SNR = 5, 10, 20 with R = 35, SNR = 10 for
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right: All three R at SNR = 10.
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Figure 7. Posterior distributions for surface pressure overplotted with P = 1 bar. There is a bias in the distributions to lower
surface pressure. Top, left: R = 35 at SNR = 5, 10, 20. Top, right: R = 70 at SNR = 5, 10, 20 with R = 35, SNR = 10 for
comparison. Bottom, left: R = 140 at SNR = 5, 10, 20 with both R = 35 and R = 70 at SNR = 10 for comparison. Bottom,
right: All three R at SNR = 10.

Earth’s reflected-light spectrum, which is paired with a WFIRST instrument model that spans 0.4 µm to 1.0 µm in

wavelength. We successfully detect all three quantities across the resolutions and signal-to-noise ratios, although our

cloud-free assumption biases the H2O and surface pressure distributions to lower values. The retrieved O3 mixing
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Figure 8. Posterior distributions for O3 overplotted with the expected model range. Most distributions converge within the
expected range. Top, left: R = 35 at SNR = 5, 10, 20. Top, right: R = 70 at SNR = 5, 10, 20 with R = 35, SNR = 10 for
comparison. Bottom, left: R = 140 at SNR = 5, 10, 20 with both R = 35 and R = 70 at SNR = 10 for comparison. Bottom,
right: All three R at SNR = 10.

ratio matches with what is expected of Earth’s atmosphere.

Moving forward, we plan to implement a multimodal nested sampling algorithm, MultiNest, which is computation-

ally quicker than emcee. This improvement in efficiency is advantageous as we look to expanding the forward model.

Our current investigation’s goal was to determine the simplest physics needed to adequately characterize an Earth-like

atmosphere. We have found that the cloud-free assumption hinders our interpretation, especially for the valuable

parameters of water vapor mixing ratio and surface pressure, which are both tied to the habitability of a planet. To

mitigate this bias, our next forward model will include a parameterization for clouds. In addition, we will include more

molecular species, such as O2. We also plan to expand our studies to other types of small worlds, such as super-Earths

and mini-Neptunes. We aim to determine the degree to which we are able to distinguish among the diverse types of

atmospheres expected for terrestrials and sub-Neptunes. We will also examine the impact of changing the considered

wavelength range. For instance, the drop-off at 0.35 µm in Figure 5 is indicative of an impressive ultraviolet feature for

O3. Allowing flexibility in our wavelength range will aid the development of potential missions such as the Habitable

Exoplanet Explorer (HabEx) or Large UV/Optical/Near-IR (LUVOIR) telescope.
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