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ABSTRACT

We explore the effect of clouds on earth-centric pure water atmospheres by using a 1D column grid

and the radiative-convective transfer model SMART. Specifically, we are interested whether the clouds

enhance or hinder the establishment of the runaway greenhouse mechanism over a wide range of

temperatures motivated by the findings of Goldblatt et al. (2013) for a clear-sky atmosphere. We

determine the cloud location and density by simple first principle considerations and manually tune

the cloud optical depth to explore a wide parameter space. In our nominal case, the clouds are located

at 10−3−10−2 bar and their optical depth is 1.7 or 17, respectively. We assume a log-normal condensate

size distribution centered at 10 µm. We find for these settings a negative cloud forcing. The increase

of the planetary albedo due to the clouds is larger than their contribution to the greenhouse effect.

Moreover, sufficiently thick clouds with τcloud & 0.6 prevent the runaway mechanism completely by

installing a stable atmospheric equilibrium state. The required cloud thickness increases for smaller

cloud coverage fractions, but no stable solution is found for a fraction of less than 0.02. Using a

test case with a surface temperature of 645 K, we probe the cloud forcing in detail in order to find

the physical reasons for the negative cloud forcing. Since the clouds are located high above the

optical photosphere but roughly coincide with the thermal photosphere their impact on the shortwave

radiation is stronger, thus explaining the net cooling. Changing the cloud particle size distribution

from a log-normal to a bimodal gamma distribution, as would be the case for two distinct condensate

populations like liquid droplets and ices, somewhat weakens the negative cloud forcing. Still, in our

set-up the latter effect is only significant for clouds with τcloud = 17 and not for clouds with τcloud = 1.7

or thinner.

1. INTRODUCTION

The runaway greenhouse is an atmospheric unstable

state where the atmosphere is unable to emit as much

radiation as it absorbs, leading to a runaway global

warming. There are two classic limits to the thermal

emission of a planet. The Komabayashi-Ingersoll limit

describes the maximum outgoing flux due to strato-

spheric and tropospheric coupling in radiative equi-

librium (Komabayashi 1967; Ingersoll 1969). An in-

creased tropospheric emission corresponds to an in-

creased stratospheric emission only until the tropopause

temperature reaches a limit, from which point on this re-

lation reverses. Above this temperature sufficient heat

release is prevented and thus runaway warming estab-

lishes. Usually this stratospheric limit is not reached,

because of the lower Simpson-Nakajima limit (Simpson

1927; Nakajima et al. 1992). Let us assume we have a

sufficiently large surface liquid water reservoir. Upon

heating the surface, liquid water evaporates increasing

the vapour mixing ratio in the atmosphere. As evapora-

tion continues the tropospheric temperature asympoti-

cally approaches the saturation vapour-pressure curve.

Since the optical depth is directly proportional to the

pressure the atmospheric photosphere (τtherm ≈ 1) will
be at the same temperature, limiting the emission in-

dependently of the surface temperature. That surface

heating from external sources is possible while the ther-

mal outgoing emission is constrained is a consequence

of the strong greenhouse nature of water. It is optically

thicker in the thermal (longwave) than in the optical

(shortwave), thus the incoming radiation is deposited in

deeper layers than the region of main emission.1

A compact summary of the atmospheric radiation lim-

its, their role for the runaway greenhouse effect and the

possible implications for the current Earth system are

discussed in Goldblatt & Watson (2012).

1 The region of main absorption and emission is characterized
by an optical depth around unity and called the photosphere. It
is usually wave-length dependent.
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1.1. Scientific Goal

We use the Goldblatt et al. (2013) as basis for our

study. They explored the runaway greenhouse for Earth

with a clear-sky atmosphere. They assumed a pure

water atmosphere, which for higher temperatures is a

good approximation, since through evaporation the wa-

ter mixing ratio becomes close to unity. They found

a limit of 286 W m−2 for the net incoming shortwave

flux and the limit of 282 W m−2 for the net outgoing

longwave flux (the Simpson-Nakajima limit) for a wide

range of surface temperatures (∼ 500 - 1600 K). Due to

this 4 W m−4 surplus of incoming radiation, the planet

is caught in a runaway warming. Only at higher than

1600 K, the planet starts to emit sufficiently through

the near-infrared water band windows to reach a stable

equilibrium state.

We use their pure water set-up and numerical method

and include a simple cloud model. We are interested

in the radiative effect of clouds on the atmosphere and

want to determine whether clouds enhance or hinder the

establishment of the runaway greenhouse mechanism.

1.2. Layout

In Section 2, we elucidate the properties of the radia-

tive transfer scheme and of the utilized clouds. For the

latter, we do not have the resources to incorporate a

micro-physics. Hence, we focus on a cloud parameter-

ization that is physically motivated yet flexible enough

to allow for a wide exploration of the relevant param-

eter space. To reach this aim, we need to answer two

questions:

• What is a plausible location and extent of clouds

in terms of altitude or atmospheric pressure? In

short: ”Where are the clouds?”

• What is the impact of the clouds on the radia-

tive energy budget of the atmosphere? As this is

given by the integrated optical depth of the cloud

aerosols, we are interested in their density and size

distribution. In short: ”How thick are the clouds?”

We investigate these motives in Sections 2.3 - 2.6.

In Section 3, we show our results. Amongst others,

we discuss the effect of clouds on the runaway green-

house over a wide temperature regime (Sec. 3.1) and

analyze the cloud forcing in detail (Sec. 3.2). Finally,

we compare our findings to previous work and conclude

in Section 4.

2. METHOD

2.1. Radiative Transfer Model

In order to pinpoint the effect of clouds on an atmo-

sphere we choose the model set-up as simple as pos-

sible while still incorporating the whole cloud physics.

For this we restrain our study to a one-dimensional az-

imuthally averaged grid. The radiative transfer is cal-

culated with the Spectral Mapping and Atmospheric

Radiative Transfer (SMART) code (Meadows & Crisp

1996), based on the DISORT model (Stamnes et al.

1988), which solves the radiative transfer equation using

the discrete ordinates method for multiple discrete ray

scattering directions (“streams”). The up- and down-

ward radiative fluxes are computed through inversion

of the matrix containing the angular information. For a

given atmospheric structure, with pre-tabulated scatter-

ing cross-sections, absorption coefficients and molecular

abundances, the SMART code calculates the spectral

(i.e. wavelength-dependent) and integrated fluxes, pro-

viding the planetary spectral energy distribution and the

atmospheric heating rates, respectively. In our set-up we

choose 8 streams for the scattering and approximate a

mean dayside hemispheric geometry with a solar zenith

angle of 57◦.2

2.2. Atmospheric Properties

Our model mimics the Earth’s atmosphere, modelled

by a plane-parallel horizontally layered grid vertically

distributed by the logarithm of the pressure P . The top

of the computational domain, which we regard as the

top of atmosphere (TOA), is at P = 10−5 bar and the

bottom is given by the surface pressure. The surface

gravity is g = 9.81 m s−2 and assumed constant in the

modelled atmosphere, as its vertical extent, z . 550 km,

is small compared to the planet’s radius R = 6371 km.

The orbital separation is a = 1 AU. The stellar irra-

diation is given by a solar Kurucz (ATLAS) spectrum

and accordingly weighted by the orbital separation. In

order to avoid the spectral “noise” of different molec-

ular species we pick a pure water atmosphere with a

H2O mixing ratio of unity throughout the atmosphere

and hence an atmospheric mean molecular weight of 18

g mol−1. Rayleigh scattering due to H2O and H2O -

H2O collision-induced absorption (CIA) are added to

the usual H2O line absorption. Additionally, a surface

liquid water content of one Earth’s ocean is assumed,

which is needed to trigger the runaway greenhouse.

2.2.1. Temperature Profile

In order to explore the runaway greenhouse in a wide

temperature regime we assume surface temperatures

Tsurf in the range 280 K ≤ Tsurf ≤ 2000 K (see Fig.

1). The corresponding atmospheric temperature pro-

files follows the moist adiabatic lapse rate, which is the

2 Due to numerical issues, we choose a slightly different angle
than the geometric average of 60◦. Such a small deviation has no
influence on the findings of this study.
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Figure 1. The atmospheric temperature profile for a range
of surface temperatures (different colors). Below the critical
point of water (T = 645 K) the profile follows the water-
vapour saturation curve and above the dry adiabat. Through
evaporation of liquid surface water the surface pressure in-
creases with surface temperature until Psurf ≈ 220 bar, at
which point all liquid water is exhausted.

empirically found structure of the troposphere.3 In a

pure water atmosphere, such a profile coincides with the

water-vapour saturation curve. In this set-up the tropo-

sphere extends until the TOA so that the stratosphere

is not modelled. This simplification is acceptable as

the impact of the optically thin atmosphere on radiative

transfer above 10−5 bar is minor. As the surface tem-

peratures increase, liquid water from the surface evap-

orates adding to the total atmospheric pressure. Thus,

the surface pressure increases with the surface tempera-

ture until all the liquid water content is exhausted. The

final bottom of atmosphere (BOA) is at P ≈ 220 bar.

Once the surface temperature exceeds the critical point
of water, located at T = 645 K, no latent heat due to

phase transitions is released or absorbed as water be-

comes a super-critical fluid. Hence, in this regime the

temperature profile follows the dry adiabatic lapse rate.

2.3. Cloud Location

Clouds form when atmospheric gas condenses out.

Since the phase transition from vapour to liquid is an

exothermic process, latent heat is released into the re-

gion of the atmosphere where cloud formation occurs.

This latent heat release manifests itself in a positive con-

vective flux divergence, analogously as the divergence of

the radiative flux leads to atmospheric heating or cool-

ing. In this sense, clouds are a natural by-product of

convection and are found where condensation leads to

3 Physically this means that convection is more efficient than
radiation at transferring heat.

a positive convective flux divergence. Thus, in order

to constraint the cloud location in the atmosphere, we

search the atmospheric regions marked with a positive

convective flux divergence.

We start with a clear-sky situation and assume for

a given surface temperature (e.g. Tsurf = 645 K) the

corresponding tropospheric temperature profile. Con-

sidering only radiation, the atmosphere will not be in

equilibrium, because the deposited radiative net flux is

positive (see Fig. 2, left panel), leading to a net warming

of the atmosphere. However, together with convection,

radiative-convective equilibrium can be established if we

demand

Fnet,rad + Fnet,conv = 0, (1)

where Frad,net and Fconv,net are the net radiative and

convective fluxes. In general, we define the net flux as

Fnet = F↓−F↑, which physically corresponds to the net

power deposited below the probed location. By differ-

entiating eq. (1), one obtains the local net convective

flux divergence through

∂Fnet,conv

∂z
= −∂Fnet,rad

∂z
, (2)

shown in the right panel of Fig. 2. Following the above

argumentation, we expect the cloud condensates to be

found in the region of positive convective flux divergence

between aprox. 10−1.5 bar and 10−4 bar. Analogously,

a negative convective flux divergence would be an indi-

cation for evaporation as found in this case in the deeper

layers around 1 bar. For our study we neglect evaporat-

ing processes and focus only on the condensing parts of

the atmosphere.

2.4. Cloud density

For the following we consider an imaginary box lo-

cated in the cloud forming region of the atmosphere

(see Fig. 3). The size of the box is small enough so that

the atmospheric pressure is assumed constant within the

box. Since the latent heat gives the energy released per

mass of water, it is possible to connect the convective

flux divergence to the condensation rate by

∂ρcond
∂t

=
∂Fnet,conv

∂z

1

Lheat
, (3)

where ∂ρcond/∂t is the condensate mass density gained

in the box per unit time and Lheat is the latent heat

released per unit mass. The condensates aggregate and

grow until being rained out since with increasing parti-

cle size gravity eventually exceeds the updraft force. In

our toy model we neglect the particle growth processes

and focus instead on the macroscopic interplay between

condensation and rainout. In equilibrium the condensa-

tion rate should be equal to the rainout density loss rate
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Figure 2. The net convective flux (left panel, blue) required to reach radiative-convective equilibrium in a clear-sky atmosphere
with Tsurf = 645 K. Under equilibrium conditions the sum of the net convective and radiative (red) fluxes vanishes. The
divergence of the net convective flux (right panel) represents the atmospheric regions of latent heat release and absorption.
Since the condensation process releases heat, clouds are expected, where the divergence of the net convective flux is positive. In
this case, it is between aprox. 10−1.5 bar and 10−4 bar.

from the box ∂ρrain/∂t so that

∂ρcloud
∂t

=
∂ρcond
∂t

+
∂ρrain
∂t

= 0, (4)

with the total box cloud density ρcloud being constant

with time. The rainout density loss rate can be approx-

imated by
∂ρrain
∂t

= ρcloud
vrain
∆z

, (5)

where vrain is the rainout velocity and ∆z is the box

height. In the macroscopic regime (particle size & 0.1

mm)4 the rainout velocity can be estimated by equating

the gravity and drag forces, which leads to

vrain =

√
8

3

ρwgRuniv

m̄

√
Tr

P
, (6)

where ρw is the water mass density, Runiv is the universal

gas constant, m̄ is the mean atmospheric molar mass and

r is the particle size. When combining eq. (3), (4), (5)

and (6) we obtain

ρcloud =
∂Fnet,conv

∂z

∆z

Lheatvrain
, (7)

for the total cloud density. It is inversely proportional

to the rainout velocity, as would be expected. For a

fixed condensation rate the bulk of the cloud is there-

fore shifted towards higher pressures (lower altitude),

since the rainout velocity depends inversely on the pres-

sure (see eq. 6). In our model we set to rainout particle

size to r = 1 mm, a value usually assumed for rain-

drops (e.g. Zsom et al. 2012). Fig. 4 shows the vertical

4 This value is estimated after the empirical data of Gunn &
Kinzer (1949).

cloud density distribution for different surface temper-

atures. Independent of the set-up the cloud remains at

the same pressure between 10−3−10−2 bar. For low sur-

face temperatures, Tsurf . 350 K, the cloud is coupled to

the surface and grows as the surface pressure increases.

For higher surface temperatures the cloud density re-

mains approximately constant. Around Tsurf = 645 K

a second thin cloud layer emerges at the surface, as the

rainout becomes very inefficient for such high pressures.

However, due to its location deep in the optically thick

region of the atmosphere the impact of the second cloud

on the radiative transfer is minimal. Further, the second

cloud disappears again for higher surface temperatures,

as the BOA conditions exceed the critical point of water

preventing any condensation. Also, the primary cloud

begins to shrink for Tsurf ≈ 2000 K as the dry adia-

bat penetrates the bottom of the cloud region removing

condensates (compare Fig. 1 and Fig. 4).

2.5. Condensate Size Distribution

For the condensates we explore two different size dis-

tributions. Our fiducial model employs a log-normal dis-

tribution with the probability density function (pdf) p

defined as

p(r) =
1

r
√

2π lnσ
exp

[
−1

2

(
ln(r/r̄)

lnσ

)2
]
, (8)

where r is the particle size, σ is the shape factor and r̄

is the median radius.5 We choose r̄ = 10 µm and σ = 2

5 The naming convention is unfortunately somewhat confusing.
Often σ is referred to as the geometric standard deviation and σ̃ =
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Figure 3. Atmospheric box toy model to estimate the
amount of cloud condensates (small orange dots). Conden-
sates aggregate and grow to water drops (large orange dots),
which eventually rain out. In equilibrium the condensation
rate equals the rainout rate.
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Figure 4. Vertical condensate (cloud) density distribution
for different surface temperatures with the bulk located
slightly above 10−2 bar independent of the set-up. Around
Tsurf = 645 K a second cloud layer emerges but disappears
for higher temperatures, which exceed the critical point of
water.

following Zsom et al. (2012) and Ackerman & Marley

(2001).

Secondly, we also explore a bimodal distribution,

which is a convolution of two equally weighted gamma

lnσ the standard deviation. The median r̄ is not to be confused
with the mode of the radius rmode = r̄ exp

[
−(lnσ)2

]
, which is

the radius of highest probability, or the mean radius rmean =
r̄ exp

[
(lnσ)2/2

]
.
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Figure 5. The pdfs of two particle size distributions explored
in this study. The log-normal distribution (green) has a me-
dian radius of 10 µm and a shape factor 2. The bimodal
gamma distribution (blue) is a convolution of two equally
weighted gamma distributions with the shape parameters
2.5 & 7.5 and the scale factor 4 µm. The latter distribu-
tion describes a mixed particle population with pure water
droplets and ice crystals with median radii of 10 µm and 30
µm, respectively.

distributions i and j, with the pdfs given by

pi,j(r) =
rαi,j−1e−r/β

βαi,jΓ(αi,j)
, (9)

where αi,j and β are the shape and scale parameters and

Γ is the gamma function. In our case, the parameters

are chosen αi,j = 2.5, 7.5 and β = 4 µm to describe

two particle populations with median radii of 10 µm

and 30 µm. The aim of this bimodal configuration is

to represent a mixed population of liquid water droplets

and ice crystals within the cloud. For simplicity we do

not employ the latter distribution in our nominal model.

However, we use it to test the impact of different particle

size distributions on the cloud forcing (see Sect. 3.3).

In Fig. 5 the two described particle size distributions

are displayed.

2.6. Cloud Optical Depth

The general formula for the optical depth contribution

of particles with radius r distributed over the width ∆z

is given by

∆τcloud(r) = Qextπr
2N(r)∆z, (10)

where N(r) is the number density of the cloud particles

and Qext is the extinction efficiency parameter. The lat-

ter modifies the cross-sectional area πr2 to obtain the

effective value relevant for absorption and scattering of

radiation of a certain wavelength. In our case we take

∆z to be the width of an atmospheric layer and use a
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Mie-scattering code to calculate Qext for a given parti-

cle size distribution. The total optical depth for cloud

particles of different sizes is then obtained by

∆τcloud,tot =

∫ ∞
0

dτcloud(r)

dr
dr, (11)

where we integrate over all occurring particle sizes. The

dependence of the number density on the particle radius

is given by

dN(r)

dr
= p(r)Ntot = p(r)

ρcloud
m̄cond

, (12)

where p(r) is the pdf of the particle size distribution

used and Ntot the total number density of condensates

of all sizes. We express the latter with the cloud mass

density (eq. 7) and the mean condensate mass

m̄cond =

∫ ∞
0

4

3
πr3p(r) dr. (13)

Figure 6 shows the cloud optical depth per atmo-

spheric layer relative to pressure and wavelength for

Tsurf = 645 K. Consistent with the cloud location, de-

scribed in Sect. (2.4), the cloud impacts mainly the

region around 10−2 bar. Also visible is the thin sur-

face cloud, located deep in the optically thick region

of the atmosphere. The wavelength dependence is a di-

rect consequence of a varying Qext with wavelength. We

show the nominal case of a log-normal particle size dis-

tribution centered around 10 µm, where the wavelength

dependency is somewhat modest and peaks around λ =

2πr, which is here in the mid-infrared around 60 µm.

Adding the individual layer contributions, the total op-

tical depth of the main cloud at 10−2 bar is around

τcloud ∼ 0.15− 0.2 depending on the wavelength.

Since the forcing of a cloud with such a small optical

depth is limited, we mainly investigate cases with 10×
and 100 × τcloud, leaving the shape of the cloud intact.

By this we combine the physical method of using the

convective latent heat release to determine the location

and shape of the cloud with a flexible parameter set for

the final cloud forcing.

3. RESULTS

In this section we describe the results obtained by in-

cluding our cloud model into the Earth’s atmosphere

clear-sky set-up (see Sect. 2.2 & 2.2.1), following in

the footsteps of Goldblatt et al. (2013), and explore the

effect of the clouds on the energy budget of the atmo-

sphere.

3.1. Greenhouse for Extended Temperatures

Similar to the results found by Goldblatt et al. (2013),

described in Sect. 1.1, we find the the clear-sky limits

of 284 W m−2 for the net TOA shortwave flux and the

maximum of 282 W m−2 for the outgoing TOA longwave
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Figure 6. The cloud optical depth per atmospheric layer
relative to pressure and wavelength for Tsurf = 645 K. The
condensates follow here a log-normal size distribution cen-
tered at 10 µm. The cloud optical depth shows a modest
wavelength dependency peaking in the mid-infrared around
60 µm, consistent with the condensate size. Adding the indi-
vidual layer contributions, the total optical depth of the main
cloud at 10−2 bar is around τcloud ∼ 0.15−0.2 depending on
the wavelength.

flux.6 The resulting net flux of 2 W m−2 causes the

atmosphere to steadily warm and induces a runaway.

Fig. 7 shows the clear-sky behaviour of the atmosphere

in blue color.

Introduction of the clouds has two main effects. First,

the clouds increase the albedo by reflecting more incom-

ing shortwave radiation and thus cooling the atmosphere

(see Fig. 7, left panel). For the clouds with τcloud = 1.7

this reduction leads to a net shortwave flux change of

−38 W m−2 at TOA once the clouds fully establish at

Tsurf & 350 K. Second, the clouds increase the optical

thickness of the atmosphere towards planetary thermal

emission (see Fig. 7, middle panel). In this particular

cloud case, as the photosphere is moved to atmospheric

layers with lesser temperatures and less emission, the

outgoing longwave flux is decreased about 30 W m−2

compared to the clear-sky case. For a given shortwave

absorption the decrease of thermal emission effect would

usually lead to higher atmospheric temperatures. Here,

the total cloud forcing, defined as the sum of the net

shortwave net longwave forcings, leads to −8 W m−2

(see Fig. 7, right panel). A negative number means

that the reduction in the shortwave absorption domi-

nates and thus the net cloud forcing represents a net

6 As expected, the limiting flux values differ marginally from the
ones in Goldblatt et al. (2013), because we use updated H2O ab-
sorption coefficients and a slightly altered numerical scheme com-
pared to the previous study.
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cooling. In fact, the clouds have a stabilizing effect by

altering the atmospheric energy budget in a way that

allows a stable equilibrium point around Tsurf = 420

K.7 Increasing the cloud optical depth to τcloud = 17

magnifies the described mechanism.

3.2. Cloud Forcing in Detail

In this section we focus on one specific atmospheric

set-up with Tsurf = 645 K. In addition, to the cloud

cases presented before, we explore here cloud optical

depths τcloud = 0.1 − 170 and instead of only switch-

ing the clouds on or off, we also vary the global cloud

coverage fraction between 0 (no clouds) and 1 (full cov-

erage). The effects for the shortwave flux are shown

in the top panel of Fig. 8, for the longwave flux in

the middle panel and the net flux in the bottom panel.

As expected, the cloud forcing increases in general with

cloud optical depth as well as coverage.8 A vanishing

net flux represents the boundary between stable and

unstable atmospheres. Hence above a certain thresh-

old thickness, clouds prevent a greenhouse runaway by

causing the TOA net flux to be negative. This threshold

is around τcloud = 0.6 for total cloud coverage and in-

creases with less cloud coverage. Independent of cloud

thickness there is no stable solution below a coverage

fraction of 0.02. The impact of τcloud = 1.7 thick clouds

with 50% cloud cover on the net flux for different surface

temperatures is shown in Fig. 7, right panel.

In the following we focus on the attenuation and emis-

sion of the shortwave and longwave fluxes in the two

nominal cases where the clouds have optical depths

of τcloud = 1.7 and 17, shown in Fig. 9 by dashed

and dot-dashed lines, respectively. Remember from

Sect. 2.4 that the primary cloud location is around

P = 10−3 − 10−2 bar with a second thin cloud layer

at the surface.

In the cloud-free case (solid line) the shortwave direct

downward radiation is gradually attenuated by water

absorption and scattering (Fig. 9, left panel). As water

is a rather poor absorber in the optical a large fraction of

the solar radiation reaches the deeper atmospheric lay-

ers where P & 10−1 bar. Through the Rayleigh mecha-

nism water molecules scatter a fraction of the stellar rays

back- and forward, forming the diffuse shortwave radia-

tion. This happens around P ∼ 1 bar as the atmosphere

needs to be sufficiently thick for the Rayleigh scatter-

7 Equilibrium means here that the same amount of energy es-
capes the atmosphere as it enters. Stable means that a slight
deviation in surface temperature alters the atmospheric interplay
of transmission, absorption and scattering in such a way that the
surface temperature is pushed back to the equilibrium value.

8 This monotonic behaviour is broken for very thin clouds with
τcloud . 0.2. This subtlety is a result of the wavelength dependent
extinction efficiency of the cloud condensates.

ing to have a significant impact. The clouds shift the

main extinction of shortwave flux upward to the cloud

layer as the clouds themselves already possess an opti-

cal depth τcloud > 1 dominating the molecular influence.

The thicker the cloud the higher up the optical depth

of unity is reached. Hence, thicker clouds absorb and

scatter the shortwave radiation at higher levels.

The longwave radiation is very small in the top layers

and slowly grows as more and more shortwave radia-

tion is absorbed and re-emitted thermally with increas-

ing atmospheric optical depth. Since thermal emission

is isotropic the magnitude of the downward and upward

longwave fluxes converges for deeper and optically thick

layers. When inserting the clouds, the upward long-

wave radiation decreases as the main emission originates

from higher and thus cooler atmospheric layers with in-

creasing cloud thickness. Below the cloud layers the

upward thermal emission is very similar to the clear-

sky case. The downward longwave flux is somewhat en-

hanced with the insertion of clouds as the additional

cloud optical depth also necessarily leads to an increase

in thermal emission.

Fig. 9, right panel, shows the resulting net shortwave

and longwave fluxes. The TOA values correspond to

the ones visible in Fig. 7. By absorbing and reflect-

ing incoming shortwave radiation on the one hand and

damping longwave outward emission on the other hand,

clouds attenuate both the short- and longwave net fluxes

in the atmosphere. With thicker clouds the resulting net

flux shifts to smaller values and as discussed above a cer-

tain thickness to negative values, effectively avoiding the

runaway regime.

3.3. Impact of the Size Distribution

For the exploration of the effect of using a bimodal

gamma distribution for the particle sizes, as described in

Sect. 2.5, we employ the same atmospheric set-up as in

the last section with Tsurf = 645 K. Fig. 10 shows a com-

parison between a model with the lognormal conden-

sate size distribution (solid) and the bimodal distribu-

tion (dashed). We find that for clouds with τcloud . 1.7

the effect of the size distribution is insignificant. Hence,

in Fig. 10 we show the thick cloud case with τcloud = 17

to make the effect visible. The main difference between

the two test cases lies in the strength of the forward and

backward scattering of the solar radiation. As the aver-

age particle size is larger in the bimodal case compared

to the lognormal case, the forward scattering is some-

what enhanced and the backscattering diminished (see

Fig. 10, left panel). This results in a 12 W m−2 higher

value for the TOA net flux in this particular set-up.
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Figure 7. Comparison of a clear-sky model (blue) and two cloud models with τcloud = 1.7 (yellow) and τcloud = 17 (red) for
different surface temperatures. The clear-sky limits for the net TOA shortwave flux and the outgoing TOA longwave flux are 284
W m−2 and 282 W m−2, respectively, leading to a runaway greenhouse effect, due to a net incoming flux of 2 W m−2. Clouds
with τcloud = 1.7 cause a net cooling in the atmosphere leading to a net TOA flux of -6 W m−2 and have thus a stabilizing
effect such that a runaway cannot establish. Setting τcloud = 17 enhances the cooling further. Also shown in the right panel as
dashed line, is the nominal case with τcloud = 1.7 but only at a cover fraction of 50%. Also in this case the net cooling is enough
to shift the net flux to negative values and lead to a stable atmosphere.

4. DISCUSSION & CONCLUSIONS

4.1. Comparison to Previous Studies

As the runaway greenhouse is a severe potential threat

to the eco-system of a planet, numerous studies have

explored upper bounds on the thermal outgoing flux of

the Earth’s atmosphere.

However, due to the complexity of cloud physics ear-

lier studies focused on clear-sky conditions. For in-

stance, Ishiwatari (2002) found that a thermal runaway

occurs if the solar constant exceeds 1600 W m−2 using

a 3D GCM (global circulation model) and a 1D radia-

tive radiative-convective model. This would correspond

to a spherically mean Simpson-Nakajima limit of 400

W m−2. Their subsequent study Ishiwatari & Hayashi

(2007) compares their GCM model with a 1D energy-

balance model (EBM) by searching for possible equi-

librium states for various solar constants and ice-cover

fractions of the surface. They find a lower limit of 1310

W m−2 for the solar constant (327.5 W m−2 averaged

irradiation), for which runaway may happen given an

initially ice-free surface. Both values are significantly

higher than what has been found by Goldblatt et al.

(2013) and us.

More recent studies often have built-in clouds into

their models; either in a simple 1D column format or

more complex GCM.

The 1D approach was used e.g. by Goldblatt & Zahnle

(2011). They explored the past Earth’s climate in terms

of the faint young sun paradox (FYSP). They imple-

mented clouds at different altitudes and investigated

their radiative effect (forcing) on the atmospheric energy

budget. They found that the cloud forcing is strongly

depending on the altitude of the clouds. Clouds high

up in the atmosphere have a strong impact on both

short- and longwave radiative transfer. If they are lo-

cated in between the optical and thermal photosphere,

the shortwave influence should dominate. Located below

both photospheres the cloud impact should be negligi-

ble. This is consistent with our study. In our case the

clouds are located above the shortwave photosphere (at

∼ 10−1 bar), but roughly coincide with the longwave

photosphere (at ∼ 10−2 bar), and their effect on short-

wave reflection appears to be larger than on the thermal

emission. In general, they found a cloud forcing of less

than 15 W m−2 for plausible set-ups. Our nominal cloud

case leads to a cloud forcing of -8 W m−2 consistent with

their range of plausible values.

The study of Leconte et al. (2013) also investigated the

irradiation limit for the runaway greenhouse transition

by combining a GCM with clouds. Their clouds are

located so high in the atmosphere that their radiative

forcing tends to vanish. However, due to their 3D grid,

unsaturated atmospheric regions created by the Hadley

circulation work as stabilizers and shift their value for

the Simpson-Nakajima limit relatively high up to 375 W

m−2.

Finally, Wolf & Toon (2015) use a similar approach

as Leconte et al. (2013), but set the clouds to deeper

atmospheric layers. By this they have a stronger ef-

fect on the shortwave radiation and provide a negative

feedback. They find the runaway to set in at 21% in-

creased solar irradiation, corresponding to a value of 413

W m−2. Earlier though, they encounter an additional

stable atmospheric state called the moist greenhouse at

12.5 % increased irradiation or 384 W m−2. This state

is marked by a very high humidity and with increased

surface temperature also evaporative water loss to space.

They argue that for Tsurf > 363 K even though a stable

moist atmosphere is possible the state is too short-lived

and should also lead to water-poor atmospheres over

longer time frames.
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Figure 8. Net shortwave (top), net longwave (middle) and
net flux (bottom) versus cloud optical depth and cloud cover
fraction for Tsurf = 645 K. In general, the cloud forcing in-
creases with cloud optical depth as well as coverage. Thick
clouds, where the TOA net flux is negative, allow for a stable
equilibrium atmosphere and thus prevent a greenhouse run-
away. The threshold for stability is around τcloud = 0.6 for
total cloud coverage and increases with less cloud coverage.
There is no stable solution below a coverage fraction of 0.02.

4.2. Future Outlook

Due to the strict time constraint given by the length of

the Kavli Summer Program only the core tests could be

conducted. In the following we present numerous possi-

bilities to extend this study and make it more robust.

• In this work we have explored the atmospheric

heating rates from the intergrated radiative fluxes.

However, for observations signatures in the plane-

tary spectral emission should be indicative as to

whether a planet is in the runaway greenhouse

regime. The brightness temperature (the temper-

ature of the main emitting layer) being much lower

than the effective temperature of the planet could

be such a signature.

• As the simplest case we approximate the runaway

in a pure water atmosphere. This is a good as-

sumption for high temperatures where the wa-

ter mixing ratio reaches unity due to liquid wa-

ter evaporation independent of the initial atmo-

spheric abundances at lower temperatures. How-

ever, the mixture of different molecules determines

the relative strength of spectral bands and win-

dows, which influences the ability to cool the at-

mosphere (c.f. Goldblatt et al. (2013) in the lower

temperature range Tsurf ∼ 300 K or in the higher

end Tsurf ∼ 1600 K). A more elaborate model

could include other important greenhouse gases,

e.g. CO2, CH4, CO, NH3.

• Instead of assuming a fixed location for the pri-

mary cloud deck one can explore how the forc-

ing changes with higher and lower altitude clouds.

The radiative impact of clouds depends on their

location relative to the atmospheric photosphere,

e.g. below the photosphere the impact of clouds

is expected to be inferior to the molecular extinc-

tion. The relative height of the clouds to the long-

wave and shortwave photospheres will determine

the radiative impact of the clouds as discussed by

e.g. Goldblatt & Zahnle (2011).

• In this study the cloud model is based on very

simplified physical assumptions regarding conden-

sation and rainout of cloud particles. The result-

ing cloud density is surprisingly low. A possible

refinement would be the implementation of a con-

vective scheme that mimics the updraft of cloud

particles. This would partially counter the rainout

rate and thus increase the cloud particle density.
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Figure 9. Comparison of a clear-sky model (solid) and two cloud models with τcloud = 1.7 (dashed) and τcloud = 17 (dot-dashed)
for Tsurf = 645 K. The primary cloud is located around P = 10−3 − 10−2 bar with a second thin cloud layer at the surface, see
Fig. 4. With increasing optical thickness the clouds dominate the molecular extinction shifting the atmospheric photosphere
upwards to the cloud location. Clouds significantly enhance scattering of shortwave radiation but simultaneously also dampen
the planetary thermal emission, as the photosphere moves up to cooler temperatures. Sufficiently thick clouds lead in general
to negative TOA net fluxes and have a stabilizing effect on the atmosphere.
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Figure 10. Comparison between a model with a log-normal condensate size distribution (solid) and a bimodal gamma distri-
bution (dashed), see Sec. 2.5 for details. Here, Tsurf = 645 K and τcloud = 17. In the bimodal case the forward scattering is
enhanced and the backscattering diminished compared to the log-normal case, which results in a 12 W m−2 higher value for the
TOA net flux in this particular set-up.



Clouds on a Water Runaway Greenhouse 11

ACKNOWLEDGEMENTS

The authors thank Tyler D. Robinson for sus-

tained support when navigating the SMART and Mie-

scattering codes employed in this study. They further

thank the SOC and LOC of the 2016 Kavli Summer Pro-

gram fur such an intellectually stimulating environment,

and the Kavli Foundation for their gracious financial

support.

REFERENCES

Ackerman, A. S., & Marley, M. S. 2001, ApJ, 556, 872

Goldblatt, C., Robinson, T. D., Zahnle, K. J., & Crisp, D. 2013,

Nature Geoscience, 6, 661

Goldblatt, C., & Watson, A. J. 2012, Philosophical Transactions

of the Royal Society of London Series A, 370, 4197

Goldblatt, C., & Zahnle, K. J. 2011, Nature, 474, E1

Gunn, K. L. S., & Kinzer, G. D. 1949, Meteorology, 6, 243 251

Ingersoll, A. P. 1969, Journal of Atmospheric Sciences, 26, 1191

Ishiwatari, M., K. N. S. T., & Hayashi, Y.-Y. 2007, J. Geophys.

Res. Atmos., 112, doi:10.1029/2006JD007368

Ishiwatari, M., T. S. N. K. . H. Y. Y. A. 2002, J. Atmos. Sci., 59,

32233238

Komabayashi, M. 1967, J. Meteorol. Soc. Jpn., 45, 137
Leconte, J., Forget, F., Charnay, B., Wordsworth, R., & Pottier,

A. 2013, Nature, 504, 268

Meadows, V. S., & Crisp, D. 1996, J. Geophys. Res., 101, 4595
Nakajima, S., Hayashi, Y.-Y., & Abe, Y. 1992, Journal of

Atmospheric Sciences, 49, 2256

Simpson, G. C. 1927, Mem. R. Meteorol. Soc., 11, 69
Stamnes, K., Tsay, S.-C., Jayaweera, K., & Wiscombe, W. 1988,

ApOpt, 27, 2502
Wolf, E. T., & Toon, O. B. 2015, J. Geophys. Res. Atmos., 120,

doi:10.1002/2015JD023302

Zsom, A., Kaltenegger, L., & Goldblatt, C. 2012, Icarus, 221, 603


