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ABSTRACT

Many theoretical studies of the atmospheric dynamics on exoplanets assume the synchronized rotation around
their stars and succeed to reproduce the features of the observed light curves of hot Jupiters. Furthermore,
recent studies have focused on the atmospheric dynamics on non-synchronized exoplanets. However, no sys-
tematic work has investigated the influence of planetary obliquity on atmospheric dynamics despite the fact
that non-synchronized planets might be tilted. In this project, we systematically investigate the atmospheric
dynamics on tilted exoplanets by using an idealized 2D general circulation model. Our simulations suggest
that the circulation patterns on tilted exoplanets are quite different from non-tilted exoplanets but with zero ec-
centricity. We also predict the observable light curves. The variations of light curves for the cases of non-tilted
and obliquity 90 deg are almost same. However, our predictions suggest that the peak of the light curve for the
case of obliquity 90 deg happens after the secondary eclipse if the observers face to the planetary poles. Con-
sequently, our results suggest that planetary obliquity has the significant impacts on the climates and observed
light curves of exoplanets.

1. INTRODUCTION

One of the great successes of the theoretical studies for
exoplanetary atmospheres is the modeling of atmospheric
circulation. Previous works investigate the atmospheric
circulation of hot Jupiters (e.g., Showman & Guillot 2002;
Cooper & Showman 2005; Showman et al. 2008, 2009;
Kataria et al. 2016; Komacek & Showman 2016), mini Nep-
tunes, and super-Earth (e.g., Menou 2012; Kataria et al.
2014; Charnay et al. 2015), whose orbits are close to their
stars. This small orbital distance causes synchronous rotation
in planets by tidal dissipation, i.e., the dayside hemispheres
of the planets face to their stars permanently (Guillot et al.
1996; Rasio et al. 1996). These theoretical studies for tidally
locked hot Jupiters predict the super-rotating equatorial jets,
which induce the eastward shifts of hotspots from the sub-
stellar point. This feature is consistent with the observed
light curves of hot Jupiters that show their peaks before the
secondary eclipse (e.g., Knutson et al. 2007; Showman et al.
2008; Knutson et al. 2009; Crossfield 2015).

In contrast to the tidally locked planets, atmospheric circu-
lation of non-synchronized exoplanets were not thoroughly

investigated. Planets beyond ∼ 0.2 AU might not be tidally
locked because the timescale of tidal spin-down is compara-
ble to typical system ages ∼ 1010 yr if we assume sun-like
stars and a Jupiter-like tidal Q value ∼ 105 (Showman et al.
2015). Such non-synchronized exoplanets might have the di-
versity of rotation period, orbital eccentricity, orbital inclina-
tion, and planetary obliquity (the angle between the planetary
rotation axis and the orbit normal), which induce complexity
in theoretical studies. Showman et al. (2015) systematically
explored the impacts of the relationship among rotation pe-
riod, orbital period, and the radiative timescale on circulation
regime with a 3D general circulation model with a non-grey
radiative transfer scheme. Lewis et al. (2010), Kataria et al.
(2013), and Lewis et al. (2014) also performed the 3D simu-
lations for eccentric hot Jupiters and a mini-Neptune.

However, there has not been a systematic study that ex-
plores the influence of planetary obliquity on atmospheric
circulation of exoplanets to date. The timescale of the
tidal evolution of the obliquity is assumed to be compa-
rable to the timescale of synchronization (Winn & Holman
2005), hence non-synchronized planets should be tilted.
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Figure 1. Schematic illustration of the one-and-a-half-layer shallow
water system. We consider the upper active layer (light blue layer)
and the lower quiescent layer (deep blue layer). The quiescent layer
maintains the steady state, and the thickness and horizontal velocity
of the active layer change with time. Radiative heating and cooling
tend to restore the atmospheric thickness (red line) toward the local
equilibrium value (black line). The active layer then exchanges the
mass and the moment between the deeper quiescent layer (green
arrow).

Langton & Laughlin (2007) investigated the spatial temper-
ature distribution and the emergent flux of a highly tilted hot
Jupiter with a 2D one-layer model. However, they also stud-
ied the case of synchronized rotation and the planetary obliq-
uity set to 90 degree. Furthermore, their simulations failed
to reproduce the equatorial eastward jet (even in the synchro-
nized rotating case) that is suggested from the actual obser-
vations (e.g., Knutson et al. 2007, 2009).

In this study, we investigate the impacts of planetary obliq-
uity on atmospheric circulation of non-synchronized exo-
planets by using an idealized two-dimensional (2D) model.
We introduce our model in Section 2. We show the pre-
liminary results of dynamical pattern in Section 3. We then
predict the observable light curves of tilted exoplanets. We
present a summary in Section 4.

2. METHOD

2.1. Shallow Water Model

We adopt an idealized one-and-a-half-layer shallow wa-
ter model to catch the feature of the atmospheric circula-
tion of tilted exoplanets (see Figure 1). This model as-
sumes an upper active layer that has constant density and
variable height h, and a lower quiescent layer that maintains
the steady state. We calculate the evolution of the height field
h(λ, ϕ) and the horizontal velocity field v(λ, ϕ) of the upper
active layer. Such idealized 2D models have been extensively
used for gas giants in our solar system (e.g., Scott & Polvani
2008), hot Jupiters (Cho et al. 2003; Showman & Polvani
2011; Perez-Becker & Showman 2013), and brown dwarfs
(Zhang & Showman 2014).

The master equations of a shallow water model are given

by
dv
dt
+ g∇h + f k × v = R − v

τdrag
, (1)

∂h
∂t
+ (v · ∇)h =

heq(λ, ϕ, t) − h
τrad

≡ Q, (2)

where λ is the longitude, ϕ is the latitude, t is the time, g is
the gravitational acceleration, f = 2Ωrotsinϕ is the Coriolis
parameter, Ωrot is the angular velocity of planetary rotation,
k is the vertical unit vector. We present the height field h as
a proxy of atmospheric temperature. Especially, the second
term of the left side in Equation (1) represents the pressure
gradient in a shallow water model that assumes the constant
density layer.

The second term of the right side in Equation (1) rep-
resents the parameterized atmospheric drag force, where
τdrag is a characteristic timescale of the momentum dis-
sipation of the atmosphere (Showman & Polvani 2011;
Perez-Becker & Showman 2013). The drag timescale rep-
resents the many kinds of potentially important effects,
which include ohmic dissipation (e.g., Perna et al. 2010) and
vertical turbulence and shock (e.g., Li & Goodman 2010).
Perez-Becker & Showman (2013) suggest that τdrag have the
weaker impacts on a circulation regime than τrad. Therefore,
we fix τdrag to be 10 Earth-day for simplicity in this study.

The right side of Equation (2) represents the radiative
heating and cooling of atmospheres, where τrad is a radiative
timescale. We introduce the Newtonian relaxation (e.g.,
Cooper & Showman 2005; Showman & Polvani 2011;
Perez-Becker & Showman 2013; Komacek & Showman
2016) of the height toward the local radiative equilibrium
height heq(λ, ϕ, t). This approximation allows us to perform
quick simulations and the extensive explorations of the
parameter space. We simply assume the radiative timescale
as a free parameter in this study. The equilibrium height heq

is calculated by the local stellar flux, therefore we define heq

as

heq(λ, ϕ, t) =

 H + ∆h[rss(t) · r(λ, ϕ)] when (rss · r) ≥ 0

H when (rss · r) < 0,
(3)

where H is the mean atmospheric thickness on the non-
illuminated hemisphere (nightside), ∆h is the difference of
the equilibrium thickness between the substellar point and
the nightside. Large value of ∆h/H corresponds to the large
temperature difference between dayside and nightside, i.e.,
strong forcing of pressure gradient. Therefore increasing
∆h/H leads to the strong winds (Showman & Polvani 2011).
We fix ∆h/H as a parameter in this study. r is a unit normal
vector and rss is the unit normal vector of a substellar point
that moves with time. In contrast to synchronized planets,
the substellar point of non-synchronized tilted planets has a
more complex trajectory. The formula of rss(t) is described
in Section 2.2.
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Figure 2. Illustration of the assumed system for tilted planets in this
study. The red trajectory and arrow represent the orbital plane and
normal, respectively. The green line and orbital normal define the
plane facing to the observer. The blue line represents the rotation
axis projected on the orbital plane. This coordinate sets the z-axis
to be the planetary rotation axis. Planetary obliquity θ is defined as
an angle between the rotation axis and the orbital normal. The Λ is
defined as an angle between the blue line and the plane facing to the
observer.

R represents the momentum transfer brought with the mass
transfer from the deeper layer, and therefore this momentum
transfer arises when Q > 0. Following Shell & Held (2004)
and Showman & Polvani (2011), we describe R as

R =

 −Qv/h (Q > 0)

0 (Q < 0).
(4)

Note that the fluid moving out of the upper layer (Q < 0)
should not induce the momentum transfer from upper layer,
hence we expect R = 0 when Q < 0. This term is crucial to
reproduce the eastward equatorial jets on synchronized rotat-
ing planets (Showman & Polvani 2011).

2.2. Time Dependence of Substellar Point

In the case of non-tilted planets, their substellar points
move along their equators. On the other hand, the substel-
lar points move in the plane inclined from the orbital plane
for tilted planets (see the right panel of Figure 2). If we as-
sume the angular velocity of planetary rotation Ωrot = 0, the
unit normal vector of substellar point rss(t) is represented by

rss(t)|Ωrot=0 =


cos Ωorbt cos θ

sin Ωorbt

cos Ωorbt sin θ

 , (5)

where Ωorb is the orbital angular velocity, θ is the planetary
obliquity. We choose the coordinate system whose z-axis
corresponds to the planetary rotation axis. To extend this for-
mula to spinning planets, we use the rotation matrix around
the planetary rotation axis. Consequently, the formula of rss

is given by

rss(t) =


cos [(Ωorb −Ωrot)t] − (1 − cos θ) cos Ωorbt cos Ωrott

sin [(Ωorb −Ωrot)t] + (1 − cos θ) cos Ωorbt sin Ωrott

cos Ωorbt sin θ

 .
(6)

If we assume the limit case of θ = 0, the normal vector of
substellar point is represented by a following simple formula

rss(t)|θ=0 =


cos [(Ωorb − Ωrot)t]

sin [(Ωorb −Ωrot)t]

0

 . (7)

2.3. Setting of Calculations

To solve the Equations (1)-(2) in spherical coordinates,
we perform the simulation by the modified Spectral Trans-
form Shallow Water Model (STSWM) of Hack & Jakob
(1992), which introduces the spectrum transform method.
A global grid is separated in 512 × 258 in longitude
and latitude. We also use ∇6 hyperviscosity to prevent
the numerical instability. This model has been used for
hot Jupiters and brown dwarfs (Showman & Polvani 2011;
Perez-Becker & Showman 2013; Zhang & Showman 2014).

The planetary radius and the gravitational acceleration are
set to Rp = 1.2RJ = 8.2 × 107 m and g = 21 m s−2 as typical
values for hot Jupiters, respectively. We set the mean geopo-
tential gH to be 4× 106 m2 s−2 by assuming the typical pres-
sure scale height of ∼ 200 km for hot Jupiters. The ∆h/H is
set to 0.5 to reproduce the eastward jet of ∼ km s−1 on tidally
locked hot Jupiters (Showman & Polvani 2011). We calcu-
late the possible combinations of 0.1, 1.0, and 10 Earth days
in τrad, 3.0 Earth days for the orbital period Porb, 1.0 Earth
days for the rotation period Prot, and 0, 45, 90, 135, 180 deg
for the planetary obliquity θ. We have run the simulations to
300 Earth days and make sure they have reached the steady
state.

3. RESULTS

3.1. Dynamical Pattern for Non-Tilted Exoplanets

We firstly focus on the atmospheric dynamics on non-tilted
planets to validate our model. Figure 3 shows the snapshots
of the calculated height fields and eastward winds. Each dis-
tribution of the eastward winds has reached the steady state.
For the case of τrad = 0.1, 1.0 Earth days, the hottest point
move along the equator with the period of the solar day for
non-tilted planets defined by (Showman et al. 2015)

Psolar =

∣∣∣∣∣ 1
Prot
− 1

Porb

∣∣∣∣∣−1

. (8)

The solar day Psolar gives the indicator of the circulation
regime when compared with the radiative timescale τrad.
When Psolar ≫ τrad, the large temperature difference between
dayside and nightside occurs in the atmosphere and drives
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Figure 3. Spatial distribution of height field (colorscale, normalized by mean values) and eastward wind averaged for longitude. Vertical axis
represents latitude. Horizontal axis represents longitude in the top rows, zonal mean eastward wind in the bottom rows, respectively. The left,
middle, and right columns adopt the radiative timescale 0.1, 1, and 10 Earth days, respectively.

the eastward jet at the equator, which corresponds to the left
panel of Figure 3. On the other hand, the temperature distri-
bution is symmetric about the equator when Psolar ≪ τrad.
In this case, the amplitude of the temperature variation is
smaller than the case of short radiative timescale by an or-
der of magnitude as we can see in the right panel of Figure
3. These results catch the basic features of circulation regime
of non-tilted exoplanets suggested by previous works (see the
figure 4 of Showman et al. 2015).

3.2. Dynamical Pattern for Tilted Exoplanets

Figures 4 and 5 show the time transition of dynamical pat-
tern for tilted planets by assuming τrad = 0.1 days and 10
days, respectively. The hottest points in atmospheres peri-
odically move within the range of |ϕ| < θ. As we can see
in Figures 4 and 5, planetary obliquity induces the periodic
heating of the high latitude regions. The period is similar to
the orbital period because the time dependence of the latitude
has the frequency of Ωorb in the Equation (6). Here we define
the timescale of the transition of latitude as

Plat = Porb. (9)

On the other hand, we can briefly predict the transition period
of substellar point along the longitude by assuming two limit
cases. First, the period takes the minimum value for θ =
180 deg. And the period reaches the maximum value for θ =
0 deg because the trajectory for this case should be shortest.
In accordance with these limit cases, we predict the range of

the transition of longitude Plon as∣∣∣∣∣ 1
Prot
+

1
Porb

∣∣∣∣∣−1

≤ Plon ≤
∣∣∣∣∣ 1
Prot
− 1

Porb

∣∣∣∣∣−1

. (10)

Here we expect that Plat and Plon control the circulation
regime of tilted planets instead of Psolar.

For the case of τrad = 0.1 day, the amplitude of the height
field variation of highly tiled planets is ∼ 10% larger than the
case of the non-tilted planets. Especially, each pole experi-
ences the strong heating when θ = 90. The height fields have
large differences between dayside and nightside because τrad

is much shorter than Plon and Plat.
For the case of τrad = 10 day, the height field shows the

smaller amplitude than the case of τrad = 0.1 day. That’s be-
cause τrad is much longer than Plon and Plat, hence the region
of |ϕ| < θ is almost isothermal except the case of θ = 90 deg.
The feature of the small longitudinal variation in height field
is induced by the radiative timescale longer than Plon. This
feature is common in tilted and non-tilted planets.

3.3. Prediction of Light Curve Shape

Here we predict the shape of the observable light curves
from planets. Following Zhang & Showman (2014), we in-
tegrate the height field over the hemisphere that faces to the
observer as a proxy of the emergent flux from planets. Emer-
gent flux F can be predicted by

F =
∫ 2π

0

∫ π
0

Eh(ϕ, λ)(r · rview)cosϕdϕdλ, (11)
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Figure 4. Spatial distributions of height field (colorscale, normalized by time averaged values). Each horizontal and vertical axises represent
longitude and latitude, respectively. These series from left side to right side show the time transition of height field in an orbital period. For
each simulation, the radiative timescales are set to τrad = 0.1 Earth day.

Where E is the function that is 1 for the case of r · rview > 0
and 0 for the case of r · rview < 0, rview is the point vec-
tor that is the closest to the observer. To derive the rview for
tilted planets, we introduce the angle Λ related to the vernal
equinox (see the left panel of Figure 2). The Λ results in the
different light curve of tilted planets even in the case of same
obliquity. When vernal equinox is placed to primary eclipse,
Λ is set to 0 deg, i.e., the observer faces to the equator. On the

other hand, Λ is set to 90 deg when vernal equinox is placed
to the orbital phase 0.25, i.e., the observer faces to the pole.
The longitude and latitude of rview are given by

ϕview = sin−1(sinθsinΛ), (12)

λview = −Ωrott. (13)

Here rview is influenced by planetary rotation only and thus
ϕview does not depend on time.
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Figure 5. Spatial distributions of height field same as Figure 4. In contrast to Figure 4, each simulation assume τrad = 10 Earth days.

The predicted light curves are shown in Figure 6. We as-
sume only τrad = 0.1 Earth days in this study because τrad

is predicted approximately ∼ 0.2 Earth days at a semi-major
axis a = 0.2 AU. Here the radiative timescale is predicted by
(Showman & Guillot 2002)

τrad =
Pcp

4gσT 3
e
, (14)

where P is the pressure of the heated region, cp is the specific
heat at constant pressure, σ is the Stefan-Boltzmann con-
stant, and Te is the equilibrium temperature given by (Guillot

2010)

Te = T∗
(R∗
2a

)1/2
, (15)

where T∗ is the stellar effective temperature and R∗ is the stel-
lar radius. Following Perez-Becker & Showman (2013) and
Showman et al. (2015), we set T∗ = 4980 K and R∗ = 5.5 ×
108 m as the values of HD189733, cp = 1.3× 104 J kg−1K−1,
and P ≈ 0.25 bar.

Our predictions suggest that each light curve has the vari-
ation of 10-15%, respectively. The variation ∼ 15% for
non-tilted planet is consistent with the previous prediction
with a 3D simulation of Showman et al. (2015). We find
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Figure 6. Emergent flux from non-tilted and highly tilted planets.
The vertical axis shows the normalized flux and the horizontal axis
shows the time normalized by orbital period. The black line repre-
sents the time variation of emergent flux for non-tilted planet. The
red and blue lines represent for the case of θ = 90 deg and Λ = 0
and 90 deg, respectively. The gray dotted lines represent the time of
secondary eclipse. For these simulation, radiative timescale is set to
τrad = 0.1 Earth days.

that the planetary obliquity has a small impact on the ampli-
tude of the lightcurve variation. The lightcurve for the case
of Λ = 90 deg has the stronger variation than the case of
Λ = 0 deg because the observers face to the poles where
experiment strong heating in the case of Λ = 90 deg. Our
prediction also suggests that the peaks of the light curves of
tilted planets happen after the secondary eclipse in the case
of Λ = 0 deg. Recent observations of the Kepler space tele-
scope suggest that reflective clouds located on the west side
induce such phase shift (Esteves et al. 2015; Shporer & Hu
2015; Parmentier et al. 2016). However our results suggest
that highly tilted planets might also cause the similar phase
shift.

4. SUMMARY

We have systematically investigated the atmospheric dy-
namics on tilted exoplanets by using a 2D global shallow

water model. Our simulations introduce the Newtonian re-
laxation to represent the radiative heating and cooling. Our
model is able to simulate the atmospheric dynamics over a
wide range of parameters, even in the planetary obliquity.

We have tested our simulations by comparing with the fea-
tures of the atmospheric dynamics on non-synchronized but
non-tilted exoplanets suggested by Showman et al. (2015).
Our simulations reproduce the same features that are deter-
mined by the relationship of τrad and Psolar. For the tilted
exoplanets, our simulations suggest that planetary obliquity
drastically influences the dynamical pattern on the planets for
the case of short and long radiative timescales, respectively.
For the case of short radiative timescales (τrad ≫ Plon, Plat),
the hottest points of atmospheres periodically move within
the range of |ϕ| < θ. On the other hand, atmosphere is al-
most isothermal within the range of |ϕ| < θ if the radiative
timescale is too long (τrad ≪ Plon, Plat). We conclude that
the relationship among Plat, Plon, and τrad controls the circu-
lation regime of tilted planets.

We have also predicted the observed light curves. Our pre-
dictions suggest that the difference of the light curve varia-
tion is small between tilted and non-tilted case. However, we
find that the peak of the light curves of highly tilted plan-
ets happen after the secondary eclipse if the observers face
to the equator. Such phase shifts are suggested from the re-
cent observations with the Kepler space telescope. There-
fore, we can expect that the future observations might help
to distinguish between the non-tilted and tilted planets from
such light curves.
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