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ABSTRACT

The total disk surface density is a fundamentally defining feature of protoplanetary disks. We present

a novel method for determining the total disk surface density through assuming that the process of

particle drift controls the radial scale of the disk. We use TW Hydra as our fiducial disk and find

that the disk size and ice line locations can be accurately reproduced using a simplified self consistent

model that relies on the disk surface density derived from the ‘dust lines’ which indicate the disk radial

scale at different observational wavelengths. We apply our simplified model to a large disk parameter

space and find several observational diagnostics of our physical assumptions. In particular, we predict

that across a given CO fraction we should find that disks with large radial scales have shorter ice lines.

We also provide an updated and expanded method of determining the impact of drift in modeling the

molecular ice lines in a disk.
Keywords: astrochemistry: circumstellar matter: molecular processes

1. INTRODUCTION

Since the first protoplanetary disk was discovered ob-

servationally, astrophysical disk research has played an

important role in understanding stellar evolution and

planet formation (O’dell et al. 1993; review by Shu et

al. 1987). The discovery of planets around other stars

(exoplanets) has sparked further interest in the study of

disks for one compelling reason: other planetary systems

do not resemble our own (see reviews by Howard 2013

and Fischer et al. 2014). The accepted solar nebula
theory of planet formation that accurately explains our

solar system fails to adequately explain other systems

without modification (review by Benz et al. 2014). This

realization has lead to the idea that planet formation is

chaotic and depends strongly on the initial conditions of

the system.

The immediate initial conditions of planet formation

are encapsulated in the protoplanetary disk that sur-

rounds the young star. We are currently in an era dom-

inated by unprecedented telescopic advances that allow

us to observe disks directly (i.e. the Atacama Large

Millimeter Array, ALMA). These advances have given

us many insights into the complexity and variety of pro-

toplanetary disks (see reviews by Williams & Cieza 2011

or Andrews 2015). Many disk characteristics, however,

remain largely unconstrained. In particular, fundamen-

tal disk properties such as the total surface density and

chemical composition are not well determined for a large

population of disks and consequently the physical pro-

cesses that dominate disk properties have not been well

determined and tested.

The total surface density of disks is a fundamental

property that is crucial in disk interpretation. Obser-

vational constraints of this important property have re-

cently been called into questioned and could be entirely

unconstrained (Mundy et al. 1996, Andrews et al. 2009,

2010b; Isella et al. 2009, 2010a; Guilloteau et al. 2011;

etc.). Given these uncertainties, we adopt an agnostic

point of view in regards to surface density and derive

this quantity using a novel method. In particular, we

focus on using this novel estimate of disk surface den-

sity to theoretically derive observational diagnostics of

disk properties that focus on the current to near future

observational capabilities. These observational diagnos-

tics could function as probes of underlying physics that

aid in further disk modeling. We can maximize the ef-

fectiveness of these diagnostics by starting with obser-

vations that are not well understood and using physical

assumptions to generalize these trends to other systems.

We use two sets of observations to constrain disk sur-

face density with little prior assumption. The first is a

set of recent observations, using the Jansky Very Large

Array (JVLA) and the sub-millimeter array (SMA), of

TW Hydra that demonstrate that the disk radial scale

is distinctly smaller at longer wavelengths (Menu et al.

2014, Cleeves et al. 2015, Andrews et al. 2012). These
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observations provide information about the distribution

of dust grains throughout the disk. We are also able

to directly observe disk chemistry as well as disk radial

scale using ALMA. This is done through direct measure-

ments of CO gas line emission or through the indirect

measurement of the CO ice line through the observation

of the N2H+ ion which is only present in large abun-

dance when CO freezes out. The indirect CO ice line

measurement has been done for TW Hydra and has a

measured location of ∼ 30 AU (Qi et al. 2013). Direct

observations of CO have also been done for TW Hydra

and give insight into the surface density contributed by

CO which is a temperature dependent quantity (Cleeves

et al. 2015; Rosenfeld et al. 2012).

We begin this paper by discussing representative pa-

rameters for our fiducial disk, TW Hydra, in Section 2.

We next detail the framework for our modeling in Sec-

tion 3. In Section 4 we present our modeling results for

TW Hydra and our application to a larger range of disk

parameter space. We conclude with a paper summary

and a discussion of the presented observational diagnos-

tics in Section 5.

2. PARAMETERS FOR FIDUCIAL DISK TW

HYDRA

To aid in the discussion of our disk modeling we con-

sider TW Hydra as our fiducial disk.

TW Hydra is a bright, long-lived, nearby disk (Rhee

et al. 2007). Although it is not representative of the typ-

ical disk, it serves as a useful test case due to the com-

parative ease of observations. We adopt a temperature

profile for TW Hydra assuming passive stellar heating

following Chiang & Goldreich (1997) where the canoni-

cal temperature profile is :

T (r) = T0 × r−3/7 (1)

where the coefficient T0 is a function of stellar luminos-

ity and stellar mass defined at 1 AU and is determined

via:

T0 = L
2/7
?

(
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4σSBπ

)2/7(
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)1/4(
k

µGM?

)1/7
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We adopt the following parameters for TW Hydra:

L? = 0.28L�, M? = 0.8M�, µ = 2.3mH assuming a

hydrogen/helium disk composition (Rhee et al. 2007).

Using this equation we derive T0 ∼ 90 K and a total

disk temperature profile of:

T (r) = 90× r−3/7 (3)

There has been great success modeling disks using the

following surface density profile reviewed in Andrews

2015:

Σ(r) = Σc

(
r

rc

)−γ

exp

[
−
(
r

rc

)2−γ
]

(4)

This profile is a shallow power law at small radii and

follows an exponential fall off at radii larger than the

critical radius. For TW Hydra the best fit parameters

are a critical radius rc = 30 AU, γ = 1, and Σc ∼ 0.4

given the disk parameters from Rosenfeld et al. 2012

based on measurements of CO line emission and a CO

fraction of 1.4× 10−4 nH (Pontoppidan 2006).

While this surface density normalization accurately

reproduces the observations, there is evidence that it

might not be correct. This surface density normaliza-

tion is based off of a CO line emission measurement and

an assumed CO fraction. Recent observations indicate

that the generally assumed CO fraction is likely incor-

rect in at least some cases and TW Hydra in particular

(Schwarz et al. 2016: Bergin et al. 2013).

TW Hydra also has a measured accretion rate of

∼ 10−9 M� yr−1 (Gunther et al. 2015). We can use

the surface density from expression to determine an ap-

proximation for mass accretion rate:

Ṁ =
Mdisk

tdisk
(5)

where Ṁ is the mass accretion rate, tdisk is the age

of the disk (roughly 8 Myr for TW Hydra: Bell et al.

2015), and Mdisk is the disk mass which we take to be

the mass of TW Hydra interior to the cut off radius

of 30 AU (Jones et al. 2012). We adopt this estimate

for Ṁ as reasonable for young disks as, for simple vis-

cous disk models, disk age is proportional to the age of

the accretion disc with a proportionality constant of or-

der unity. We can thus regard disk age as a proxy for
disk evolution timescale and use this simple dimensional

argument. Equation 5 gives an accretion rate that is

3 order of magnitudes smaller than the observationally

measured accretion rate for TW Hydra.

These surface density complications thus motivate a

more agnostic treatment of the surface density profile.

3. MODEL FRAMEWORK

We present our simplified methods of modeling pro-

toplanetary disks with the goal of determining observa-

tional diagnostics of fundamental physical process and

disk properties. As we present these methods we use

TW Hydra as an illustrative example. Modeling TW

Hydra is particularly useful as we already know the lo-

cation of the dust and ice lines. TW Hydra therefore

provides the obvious test of our physical assumptions

and whether or not they are widely applicable to other

disks.
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Figure 1. The dominant particle size divided by the disk
radius as a function of radius. The three blue circles are
observations from Menu et al. 2014, Cleeves et al. 2015,
and Andrews et al. 2012. The upper limit arrow represents
measurements of the CO gas and might be indicative of the
total size of the disk (Debes et al. 2013).

In Section 3.1 we discuss our modeling of disk dust

lines which we use to refer to the disk radial scale dom-

inated by a particular dust grain size. These dust lines

were observed in TW Hydra which we discuss further in

Section 3.1. We continue to discuss the relevant physics

in our model in Section 3.2 as we discuss our modeling

of disk ice lines.

3.1. Dust Lines

As mentioned in Section 1, the radial scale of TW

Hydra appears smaller when observed at longer wave-

lengths. Observations at 0.87 mm show a disk size of

approximately 60 AU (Andrews et al. 2012), at 1.3 mm

the disk size is around 50 AU (Cleeves et al. 2015), and

at 9 mm the disk size is approximately 25 AU (Menu

et al. 2014). If we assume that the radiation at these

wavelengths is dominated by the largest particles in the

size distribution then these observations give us informa-

tion about the distribution of dust particles throughout

the disk (Birnstiel & Andrews 2015). In particular, we

assume that the wavelength of the observations is equiv-

alent to the dominant particle size at the largest radius

observed as shown in Figure 1. When we plot the par-

ticle size as a function of radius we see that this points

are well fit by a power law function.

Our primary assumption in modeling the disk dust

lines is that their location is dominated entirely by par-

ticle drift. To do this we consider the distance that

a particle would drift over the lifetime of the disk. A

number of timescale could impact the dust line loca-

tions such as drift, growth, and collisional destruction.

We consider the regime dominated by drift as motivated

in Powell, Murray-Clay, & Schlichting (in prep).

3.1.1. Radial Drift

In a protoplanetary disk the gas orbits at a sub-

Keplerian velocity due to an outward pressure gradient

(Weidenschilling 1977). The particles in the disk con-

tinue to rotate at a Keplerian velocity (vk ≡ Ωkr) and

experience a headwind from the gas. This headwind

causes the particles to loose angular momentum and

drift radially inwards ((Weidenschilling 1977;Takeuchi

& Lin 2002). The amount of drift that a particle experi-

ences depends on how well-coupled the particle is to the

gas. This gas and particle coupling can be quantified

by a dimensonless stopping time: τs ≡ Ωkts where ts is

defined as:

ts =

ρss/ρcs s < 9λ/4 Epstein drag,

4ρss
2/9ρcsλ s > 9λ/4,Re . 1 Stokes drag.

(6)

as summarized in Chiang & Youdin 2010. Here ρ is

the gas midplane density, ρs = 2 g cm−3 is the density

of a solid particle, s is the particle size, and λ is the gas

mean free path.

The particle drift velocity is:

ṙ ≈ −2ηΩkr

(
τs

1 + τ2
s

)
(7)

where η ≈ c2s
2v2k

(from the review by Chiang & Youdin

2010) and we define the drift timescale as:

tdrift =
∣∣∣r
ṙ

∣∣∣ (8)

We can now derive an equation for drift timescale that

directly depends on the disk surface density. We do this

by realizing that the parameter we define as v0 ≡ ηvk =
c2s

2vk
varies weakly with radius. We find that cs ∝ r−3/14

where cs =
√

kT
µ using equation 3 for temperature as

a function of radius. For the Keplerian velocity we find

that vk ∝ r−1/2 using Kepler’s third law. This gives a

parameter v0 that is weakly dependent on radius: v0 ∝
r1/14.

When deriving the surface density based off of the

dust line measurements we consider a small dimension-

less stopping time due to the small particle sizes inferred

from dust line observations (see Section 3.1). In the

outer disk where we observe these dust lines small bod-

ies are in the Epstein drag regime and are well coupled to

the gas. We therefore rewrite the dimensionless stopping

time from Equation 6 in the Epstein regime as τs = ρss
Σ .

This allows us to write the drift timescale directly in

terms of the surface density, radius, particle size, and
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the parameter v0:

tdrift =
Σr

v0ρss
(9)

This new formulation of the drift timescale allows us

to set the drift timescale equal to the age of the disk

and solve for surface density at the dust line radius. We

do this assuming that the dominant particle size s is

given by the wavelength of the observation. We thus

derive the following equation for disk surface density as

a function of radius.

Σ(r) =
tdiskv0ρss

r
(10)

where tdisk is the age of the system. This formula-

tion is particularly valuable as it gives a direct scaling

between surface density and radius as the term v0 is

roughly constant with radius. This direct relation only

needs a further assumed temperature profile to derive

the disk surface density.

We can now use Equation 10 to determine the surface

density of TW Hydra as a function of radius (See Figure

2). We again use a disk age (tdisk) of 8 Myr.

The derived surface density points are well described

by steep power law of approximately r−4. Initially, this

appears to be an unrealistically steep function. How-

ever, as these points fall close to the observational fall-off

range of the Rosenfeld et al. 2012 disk, they match the

profile well when a surface density normalization factor

is applied.

We treat the critical surface density Σc as a floating

parameter used to normalize the Rosenfeld et al. 2012

surface density to fit our derived surface density points

(see Figure 2). This gives a close fit to our rough sur-

face density approximation because the exponential fall

off occurs close the the smallest radii we consider. We

find that a surface density normalization of Σc = 103

adequately matches our derived surface density points.

We are currently investigating the effect of error bars on

dust line radial measurements.

3.1.2. Particle Growth

As discussed in Powell, Murray-Clay, & Schlichting (in

prep), the growth of particles is something that could

change this simplified picture of particle drift. In the

drift regime that we consider, larger particles drift faster

and do not remain at the same dust location for long

timescales. Thus, we assume that the particle size that

contributes the most to emission is the largest particle at

that radius that has not yet had time to drift further in-

wards. This is particularly true as dynamical timescales

in the outer disk are slower due to the decreased surface

density. A more thorough treatment of growth might
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Figure 2. The points indicate the surface density of TW
Hydra derived using the three observational data points. The
surface density profile at these radii are well fit by a dramatic
r−4 power law. The normalized surface density profile is
shown in blue. The normalized surface density profile is an
r−1 power law interior to the critical radius (rc) of 30 AU and
is then described by an exponential fall off at radii larger than
rc. We find that a surface density normalization of Σc = 103

adequately matches our derived surface density points.

change this picture and we plan on quantifying this ef-

fect further.

3.2. Ice Lines

Ice lines are the points in a disk where the temper-

ature changes such that volatile compounds freeze out

at radii past this point (Hollenbach et al. 2009). The

three ice lines that are most frequently calculated are

H2O, CO2, and CO as these species are considered to

be in relatively high abundance (Oberg et al. 2011). To

date, only the CO ice line has been observed (Qi et al.

2013). We thus primarily focus on CO ice line calcu-
lations. However, when we consider a larger parameter

space of disk parameters, we further extend our argu-

ments to other volatile species as well.

There are three theoretical pieces of physics that we

consider in our ice line calculations: adsorption, desorp-

tion, and drift.

3.2.1. Volatile Adsorption and Desorption

The classic ice line calculation balances adsorption

and desorption flux onto a grain to determine the ice line

radius (Hollenbach et al. 2009; Oberg et al. 2011). We

refer to this ice line as the ‘classical ice line’. Following

Hollenbach et al. 2009, these two fluxes are quantified

as:

Fadsorb ∼ nics (11)

Fdesorb ∼ Ns,iνvibe−Ei/kTgrainfs,i (12)
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where ni is the relevant gas density species, cs is

the sound speed, Ns,i ≈ 1015 sites cm−2 is the num-

ber of adsorption sites per volatile per cm2, νvib =

1.6× 1011
√

(Ei/µi) s−1 is the molecules vibrational fre-

quency in the surface potential well, Ei is the adsorption

binding energy in units of Kelvin, fs,i is the fraction of

the surface adsorption sites that are occupied by species

i (which we take to be unity). Finally, we assume that

Tgrain = T , meaning that the dust and gas have the same

temperature in the disk mid-plane.

Balancing Equations 11 and 12 allows for us to solve

for the freezing temperature of a species as a function

of radius for a given disk surface density profile. We

then locate the classical ice line location by finding the

disk radius where the molecular freezing temperature is

equal to the disk temperature at that location. This self-

consistent solving of the classical ice line location allows

us to determine how the ice line location changes as a

function of both disk surface density and temperature.

3.2.2. The Influence of Particle Drift

Particle drift, as described in Section 3.1.1, influences

the location of the ice lines (Piso et al. 2015). This is

because particles that drift faster can cross the ice-line

before desorbing, thus potentially moving the location

of the ice line inwards. The drift ice line location can

be calculated by setting the desorption timescale equal

to the drift timescale and solving for the desorption dis-

tance, rdes (as verified by time evolving calculations in

Piso et al. 2015). This is done analytically for the small

stopping time approximation in the Piso et al. 2015 Ap-

pendix. We extend this calculation to the τs > 1 regime.

We balance the drift timescale (Equation 8) and the des-

orption timescale (Equation 13) to solve for rdes.

tdes =
ρs

3µimH

s

Ns,iνvibe−Ei/kTgrain
(13)

where ṙ is given in Equation 7 and µi is the molecular

weight of the desorbing species.

Again, we make no approximations in Equation 8 in

regards to τs. We instead use the two distinct stopping

time expressions given both Stokes and Epstein regimes.

We use the iterative numerical modification of the

Powell hybrid method (see MINPACK subroutine HY-

BRD) to solve for radius through balancing Equations 8

and 13. We consider the radial dependence of each term

without approximation which allows us to derive a com-

pletely self-consistent estimate of rdes for any arbitrary

surface density or temperature profile.

We compare the difference between the drift ice line

and the classical ice line for our new self-consistent solver

and the analytic solver from Piso et al. 2015 in Figure 3.

Figure 3 considers CO molecules located at the classical

CO ice line for the disk parameters from Piso et al. 2015.

We find that particles smaller than 8 cm do not drift

past the ice line. Particles larger than 8 cm do experi-

ence drift in this case, with the maximum drift reached

at a τs of around 1 that reaches a near constant value at

higher stopping time. The nearly constant drift distance

at particle sizes with a stopping time greater than 1 oc-

curs due to the interplay between two different pieces of

physics. The first is that the larger the particle size the

longer it takes for that particle to desorb and the fur-

ther it can drift past the ice line. The second is that the

maximum drift velocity occurs for particles with τs = 1.

The decrease in drift velocity past a stopping time of

one is offset by the increase in particle size until the

regime changes from Stokes to Epstein. We therefore

see a functionally constant rdes for large particle sizes.

Due to this effect, we consider the drift ice line of a

τs = 1 particle at the classical ice line location and nu-

merically solve for the drift distance without making any

further approximations. This is roughly indicative of the

largest drift distance past the ice line as particles above a

certain size all desorb at roughly the same distance. The

existence of a maximum drift distance found in our self-

consistent solution is important in understanding the

relevance of particle drift in ice line calculations. Given

this updated calculation we can now determine when

drift will play a distinct role in determining the location

of the ice line.

We find that the particular radial location of the clas-

sical ice line in a disk strongly impacts the importance

that drift will play in altering ice line observations. We

find that the process of drift becomes important when

the classical ice line occurs at a point in the disk where

larger particles have a stopping time close to 1 (see Fig-

ure 4). Drift will play the largest role at the radial lo-

cation where the particle size with τs = 1 reaches a

maximum. Recall that the τs = 1 particle is roughly

indicative of the largest drift distance past the ice line.

While this general point is always true, the size of the

τs = 1 particle at a particular location changes depend-

ing on the overall surface density profile and the radius

that is considered. Thus, in every disk, there is a radial

location where the τs = 1 particle size reaches a maxi-

mum. If the ice line of a particular molecule occurs near

this point then drift will play a large role in determining

the true ice line location.

3.3. CO Fraction

Given our physical setup, we can now determine the

CO fraction if the radial size of the disk and the CO

ice line are both known observational quantities. This

is done by scaling our classical CO ice line as described

in section 3.2.1 to determine a CO surface density. We

then divide the CO surface density by the derived total

surface density as described in Section 3.1.1.



6 Powell et al.

10-4 10-3 10-2 10-1 100 101 102 103 104

Particle Size

0

20

40

60

80

100

120

140

160
De

so
rp

tio
n 

Di
sta

nc
e

Both Regimes
P2015

100 101 102 103 104

Particle Size [cm]

20

10

0

10

20

30

40

50

Dr
ift

 D
ist

an
ce

 P
as

t t
he

 Ic
e L

in
e [

AU
] Both Regimes

P2015

Figure 3. Left: The drift distance for CO molecules calculated using the analytic method from Piso et al. 2015 (green) and our
new extended solver (blue). We find great agreement for particles with a stopping time less than unity. Right: The distance
that a CO particle is able to drift past the classical CO ice line before desorbing using the analytic method from Piso et al.
2015 (green) and our new self-consistent solver (blue). Using our extended solver we see that for this comparison case, particles
smaller than 8 cm do not drift past the ice line. Particles larger than 8 cm do experience drift in this case, with the maximum
drift reached at a τs of around 1 that reaches a constant value at higher stopping time.

Figure 4. The size of τs = 1 particles in the disk as a
function of radius for two different surface density profiles:
our TW Hydra surface density profile (blue) and the com-
monly used minimum mass solar nebula surface density pro-
file (green). The τs particles are the largest particles that are
still well-coupled to the gas. Drift plays the largest role in
shifting the ice line locations when the ice lines occur close to
the peak in these functions as large particles desorb slower.

The fraction of CO (XCO) in the disk is not well con-

strained for TW Hydra. The commonly used literature

value of CO for disks is 0.9 − 2 × 104 nH (Pontoppi-

dan 2006). However, recent observations of TW Hydra

quote an upper limit of ∼ 10−6 nH (Schwarz et al. 2016)

through considering only the hot gas in the disk.

We derive a CO fraction using the CO ice line ob-

served in Qi et al. 2013 and our total surface density

determined in Section 3.1.1. We find a CO fraction of

approximately 10−7 nH. This fraction is consistent with

the conclusion from Schwarz et al. 2016. The reduction

of 3 orders of magnitude from the commonly accepted

literature value for disks indicates that other processes

in the disk, such as photochemistry, must be playing an

important role.

4. RESULTS

We are now able to test our physical assumptions

through applying our physical model to TW Hydra and

comparing to the fitted observations as a proof of con-

cept. We then apply these assumptions to a broader

range of parameter space to derive general trends and

observational diagnostics.

4.1. Complete Application to TW Hydra

We are now able to completely model TW Hydra using

an XCO of 10−7 and a surface density normalization of
Σc = 103 (see Figure 5). We find that we are able to

adequately reproduce the observed disk radial scale of

TW Hydra at various wavelength by assuming that the

drift timescale is equal to the age of the system and using

our derived surface density profile (see Section 3.1.1).

We recalculate our classical CO ice line following Section

3.2.1 and find that it is in great agreement with the

observed ice line of∼ 30 AU as expected (Qi et al. 2013).

We also find the same CO fraction through using the

quote CO surface density from Schwarz et al. 2016 in

comparison to our derived total disk surface density.

We calculate the maximum CO drift ice line following

Section 3.2.2 and find that the drift ice line for TW

Hydra is distinctly interior to the classical CO ice line.

The radius of the maximum drift location is close to the

∼ 17 AU mid plane CO ice line as derived by Schwarz

et al. 2016, although these measurements might not be

strictly analogous.
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Figure 5. A model of the dust and ice lines in TW Hydra.
The blue lines are the dust lines solved by assuming that the
drift timescale is equal to the age of the system. These blue
lines adequately reproduce the observed disk radial scale of
TW Hydra at various wavelengths. The solid red line is the
classical CO ice line solve by balancing the adsorption and
desorption flux onto a grain. This line is in great agreement
with the observed ice line of ∼ 30 AU (Qi et al. 2013). The
dashed red line is the CO drift ice line for a τs = 1 particle.
This ice line roughly corresponds to the measured mid plane
CO snow line of ∼ 17 AU from Schwarz et al. 2015 although
this may not be an entirely analogous comparison.

We can now consider the accretion rate for our newly

normalized surface density profile for TW Hydra us-

ing Equation 5. We find an accretion rate of ∼ 10−8

M� yr−1. This accretion rate is an order of magnitude

larger than the measured accretion rate for TW Hydra

of ∼ 10−9 M� yr−1 (Gunther et al. 2015). This is

an improvement from the previous surface density pro-

file that gives a value that is 3 orders of magnitude too

small. However, we are currently investigating error bars

on the radial scales of TW Hydra to determine the rea-

sonableness of our derived accretion rate.

After completely modeling TW Hydra using our sim-

plified physical model we find that the disk size of TW

Hydra can be reproduced by assuming tdrift = tdisk.

We also find that the CO ice line locations can be ac-

curately determined by self-consistently balancing ad-

sorption and desorption while considering particle radial

drift.

While we fit these parameters to observations for

TW Hydra we are nonetheless able to show that dust

lines give an indication of the total disk surface den-

sity. We also demonstrate that using our derive surface

density profile, when coupled to observed ice line mea-

surements, we are able to derive the CO fraction using

self-consistent modeling.

4.2. Observables in Other Disks

We now apply our model more generally to determine

how the classical and drift ice line locations scale with

disk surface density and temperature. We consider a

large range of parameter space as it is possible that disk

parameter space for different stellar types is larger than

was previously assumed. We also look in more detail

at the case of an early sun-like star to determine how

disk size and ice line locations change with disk surface

density to form an intuition for observable diagnostics

of the physics that we have considered.

4.3. Ice Lines as a Function of Disk Surface Density

and Temperature

We self-consistently solve for the difference between

the classic and drift ice lines for CO, CO2, and H2O

(see Figure 6). We use the fraction of these molecules

as used in Oberg et al. 2011: XCO = 1.5 × 10−4 nH,

XCO2 = 0.3 × 10−4 nH, and XH2O = 0.9 × 10−4 nH.

Assuming these molecular fractions, we find that drift

is most important for CO2 and generally increases at

moderate densities and high temperatures for all three

molecular species. Here we consider a disk passively

heated by the star as discussed in Chiang & Goldreich

1997 for a fixed snapshot in time (accretion heating and

stellar luminosity changes are not considered). The tem-

perature profile used is given in Equation 1 for different

temperature normalizations (T0).

We find that drift is most important for CO2. This

finding is reasonable given our discussion in Section 3.2.2

as CO2 has a freezing temperature that is warmer than

CO and cooler than H2O. The location of the classical

CO2 ice line is thus generally located in the middle of

the disk near the peak in τs = 1 particle size meaning

that we expect drift to play a large role (see Figure 3).

We also find that the importance of drift generally

increases at moderate densities and high temperatures

for all three molecular species. And, most importantly,

we find that the disk ice line locations and influence of

drift largely depend on the fundamental properties of

the disk. This is important to consider when interpret-

ing observations as it allows us a means to derive disk

properties from ice line measurements assuming a set

molecular fraction.

4.4. Disk Radial Scale as a Function of Disk Surface

Density

Let us now consider the case of a particular stellar

type to aid in intuitively understanding how the dust

and ice line locations change as a function of surface

density. This is particularly relevant in determining ob-

servational diagnostics as these two parameters do not

scale with density in the same way.

We consider the case of a sun-like star in more detail to

observe trends as a function of surface density alone at a
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Figure 6. The fractional difference between the classically derived ice line r and the drift ice line rdes as a function of disk
density and temperature. Drift is most important for CO2 and generally increases at moderate densities and high temperatures.
The y-axis label T0 refers to the temperature normalization for Equation 1.

fixed temperature profile. We again choose the familiar

r−3/7 temperature profile of a passively irradiated disk

and normalize this function so that the minimum mass

solar nebula has a classic H2O ice line outside of 1 AU

(see Figure 7 and Section 3.2.1). We do this relying on

the evidence that the Earth is not an ice ball and thus

must have formed interior to the H2O ice line.

The derived temperature profile is:

T = 210× r−3/7 (14)

We again assume CO, CO2, and H2O abundances as

assumed in Oberg et al. 2011.

We find that for both CO and CO2, the disk size in-

creases with increasing surface density while the ice line

decreases (see Figure 8). For the CO ice line, the drift

distance is negligible. For the CO2 ice line drift plays a

small role that decreases in importance with increasing

surface density (see Figure 8). The trends for the H2O

ice line are the same as for the CO ice line where the ice

line drift distance is negligible.

These trends are the observational diagnostics needed
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Figure 7. The H2O (red), CO2 (green), and CO (blue) freez-
ing temperature as a function of radius for the minimum
mass solar nebula (MMSN). The black line is the minimum
temperature profile that places the H2O ice line outside of 1
AU.

to determine the accuracy of our physical assumptions.

5. SUMMARY AND DISCUSSION



Using Ice and Dust Lines to Constrain Disk Surface Density 9

101 102 103

Σc

10-1

100

101

102

103
Ra

di
us

 [A
U]

Particle locations in disk
"Classic" iceline

101 102 103

Σc

10-1

100

101

102

103

Ra
di

us
 [A

U]

Particle locations in disk
"Classic" iceline
rdes

101 102 103

Σc

10-1

100

101

102

103

Ra
di

us
 [A

U]

Particle locations in disk
"Classic" iceline
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the drift ice line (green line) for CO (top right), CO2 (top left), and H2O (bottom middle) as a function of surface density. The
radial size of the disk increases dramatically with increased surface density while the ice line location decreases.

We begin the discussion of our observationally mo-

tivated simplified disk model with the decision to be

agnostic about the disk surface density profile. We use

TW Hydra as an illustrative example and as a proof of

concept. We use the locations of dust lines to determine

the disk surface density by setting tdrift = tdisk. We

then obtain a larger surface density normalization for

TW Hydra than was found in the literature by Rosen-

feld et al. 2012.

Our new surface density gives an accretion rate mea-

surement that is 1 order of magnitude too high as com-

pared to 3 orders of magnitude too low using the previ-

ous surface density normalization. We expand the cal-

culations for the drift ice line of disks and expand the

calculation to self-consistently include particles with di-

mensionless stopping time greater than one. We calcu-

late a CO fraction for TW Hydra of 10−7 M� yr−1 which

is two orders of magnitude lower than the standard lit-

erature value, however, this is consistent with derived

values of TW Hydra as seen in Schwarz et al. 2016.

We demonstrate that our simple model applied to a

large parameter space indicates that both the ice line

locations and the importance of drift in the ice line in-

terpretation depends on both disk density and temper-

ature. We also demonstrate that for a fixed stellar type,

the disk ice lines decrease in radius as the disk radial

scale increases.

To test the dominant physics in our simplified model it

is necessary to analyze dust and ice line observations for

a large number of disks. The observational diagnostics
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of our model predict that we should find that disks with

larger dust lines have smaller ice lines.

We expect this trend to be particularly true across a

single stellar type. This is because we can likely assume

that the CO fraction is constant across a stellar type

if this ratio is primarily determined by photochemistry

or other stellar dependent processes. This assumption

would allow us to accurately understand and test ex-

pected trends across a particular set of assumptions.

There are many exciting modeling outcomes if our ob-

servational diagnostics prove to be correct. If true, we

will be able to glean an estimate of the total disk surface

density from the disk radial scale alone. We will also be

able to quickly determine the CO fraction from the CO

ice line location and the density derived from the disk

radial scale. This information would be invaluable for

other disk modeling and the further understanding of

planet formation and evolution.
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