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1 Introduction

Today, our understanding of the general evolution of low-mass stars may be considered as fairly
advanced. Stellar evolution codes are able to model the complete evolution of such stars, from
the pre-main sequence phase to the white dwarf stage, and explain general properties such
as their effective temperature and luminosity. But if we move from the broad picture to more
detailed aspects of the evolution, strong weaknesses in the modelling of fluid dynamics appear at
various evolutionary stages, affecting the treatment of convective processes but also of turbulent
mixing in convectively-stable regions.

With the advent of recent and precise observational constraints from asteroseismology and
spectroscopy, it has been noted that observations of surface abundances of some chemical el-
ements and of subsurface flows cannot be explained by standard models only. Following this,
several studies have thus suggested that the inclusion of turbulent mixing in the stably-stratified
regions of stars could be a way to solve these discrepancies.

Figure 1: Picture of the internal rotation of the Sun, as obtained from helioseismology. Figure taken
from Schou et al. (1998).

One very well-studied case where turbulent mixing is known to be important is that of the
solar tachocline. As illustrated by helioseismic observations, the envelope of the Sun displays
a differential rotation profile with equatorial regions rotating more rapidly (Qeq ~ 450nHz)
with respect to polar regions (poe ~ 350nHz; Fig. 1). Just below the base of the convective
envelope lies the solar tachocline, which is known to be a very strong vertical and horizontal
shear layer. Another evidence for turbulent mixing related to the tachocline region comes from
helioseismic observations of the solar sound speed profile. Comparisons of the observed and
predicted sound speed show a significant discrepancy just below the base of the convective zone
(recz ~ 0.71Rg), which can be straightforwardly related to the location of the tachocline (e.g.
Christensen-Dalsgaard et al., 2018, see Fig. 2). This discrepancy is again telling us that some
mixing process is missing in our current standard model of the Sun.

Former studies, such as Spiegel & Zahn (1992), have shown that in a standard picture of the
Sun, in the absence of turbulent mixing, one would see a similar differential rotation profile from
the convective zone to at least halfway to the solar centre. That would still be the case if one
were to include isotropic turbulence which acts equally in the vertical and horizontal directions.
By contrast, if one considers anisotropic turbulence whereby the horizontal component is much
stronger than the vertical one, the tachocline region can actually be reproduced and limit the
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Figure 2: Relative difference between the observed and predicted sound speed as a function of the
normalised solar radius. The base of the convective zone is located at rpcyz ~ 0.71 Rg. Figure taken from
Christensen-Dalsgaard et al. (2018).

spread of differential rotation in the inner parts of the Sun, as shown on Fig. 3. Hence,
the missing mixing process, suggested by helioseismic observations, could be related to shear-
induced, strongly anisotropic turbulence.
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Figure 3: Illustration of the spreading of differential rotation below the base of the convectize zone,
at the current age of the Sun, with isotropic (left) or anisotropic turbulence (right). Figure taken from
Elliott (1997).

Motivated by these findings, several studies have been dedicated to the analysis of Direct
Numerical Simulations (DNSs) of shear instabilities to determine how much mixing they cause.
Studies from Prat & Lignieres (2013, 2014), and also Garaud et al. (2017), have suggested
that turbulence as induced by vertical shear instabilities is not very efficient. On the contrary,
horizontal shear instabilities are potentially more relevant to stellar evolution. Recents works
by Cope et al. (2020) and Garaud (2020) have tested a model for vertical mixing by horizon-
tal shear instabilities, that was initially proposed by Zahn (1992). Fig. 4 shows simulation
snapshots from Cope et al. (2020) in the stratified turbulent regime; the large-scale horizontal
meanders decouple in the vertical direction, and lead to small-scale vertical mixing. Garaud
(2020) identified different regimes of turbulence via horizontal shear instabilities (see Fig. 5). In
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particular, they found the solar tachocline to be located in the non-thermally diffusive regime,
at rather high Péclet numbers — which will thus be the focus of the current study. As part
of her study, Garaud (2020) derived scaling laws for the RMS vertical velocity, vertical eddy
scale, and RMS temperature as a function of the buoyancy parameter B (Fig. 6). Simulations
deviating from these laws either fall in the weakly-stratified regime, at very low values of B, or

in the viscously-dominated regime.

Figure 4: Snapshots of the streamwise velocity (left) and vertical velocity (right) during the statistically-

stationary states of DNSs of horizontal shear in the stratified turbulent regime. Figure taken from Cope
et al. (2020).

1x10™ | Pr=107"°,

1x10"2

-

-

Unstratified Turbulence

1x10"°

Pe
1x10®

HPNST

1x10°
10000

100

G & &>
1100 10000 1x10° 1x10® 1x10'0 1x10™ 1x10™
B

Figure 5: Péclet number (quantifying the efficiency of thermal diffusion) as a function of the buoyancy
parameter (as a measure of the stratification), illustrating the different regimes of turbulence via horizontal
shear instabilities at a given Prandtl number: Pr = 1076, The latter measures the ratio between viscous
diffusion and thermal diffusion, and a low value is appropriate for stellar interiors. HPNST (LPNST)

corresponds to the high (low) Péclet number stratified turbulence regime. Figure taken from Garaud
(2020).

From these studies, it seems clear that vertical shear instabilities alone are not important
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Figure 6: RMS vertical velocity (top left), vertical eddy scale (top right), and RMS temperature (bottom),
as a function of the buoyancy parameter. Triangles and squares correspond to Re = 300 and Re = 600
stmulations, respectively. The purple lines represent fits to the data. Figure taken from Garaud (2020).

enough. Meanwhile, horizontal shear instabilities can constitute a significant source of turbulent
mixing in stars, although they do not provide the anisotropy needed in order to reproduce the
present-day tachocline (Garaud, 2020). Additional effects still need to be taken into account,
including magnetic fields and rotation. In particular, what happens when vertical and horizontal
shear are combined together remains to be determined.

Hence, in this study, we analyse Direct Numerical Simulations of this combined vertical
and horizontal shear in the high Péclet regime. Sec. 2 briefly describes the setup used for our
numerical simulations of vertical and horizontal shear instabilities. Sec. 3 presents some of our
simulations, as well as the method employed to extract the average parameters. Sec. 4 analyses
the results and gives a comparison with the purely horizontal shear case from Garaud (2020).
Finally, Sec. 5 concludes our investigation by discussing possible implications for the Sun and
other stars.

2 Model setup

The non-dimensional governing equations for our study are the following, the momentum equa-
tion (Eq. 1), the incompressibility condition for Boussinesq fluids (Eq. 2), and the temperature
equation (Eq. 3):
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g +1-Via=—-Vp+ BTle, + Re V% +sin(y + ztanf)e, , (1)
V-u=0, (2)
%t+ﬁ-VT+w:Pe—1v2T. (3)

These equations have been non-dimensionalised using the anticipated amplitude of the flow
Ur (Eq. 4), obtained by requiring a balance between the inertial terms and the forcing in the

x direction:
i) 1/2
Urp = 4
F <Pmk8> ’ )

where Fj is the amplitude of the sinusoidal body force driving the shear (F = Fjsin(y+z tanf)),
pm is the mean density of the region, and ks = 2m/L,, is the wavenumber associated with the
domain width L.

Several parameters are introduced in these equations; the Reynolds number Re, the ratio of
the viscous diffusion timescale to the turbulent advection timescale; the Péclet number Pe, the
ratio of the thermal diffusion timescale to the turbulent advection timescale; and the buoyancy
parameter B, the square of the ratio of the Brunt-Vaiséla frequency N to the unit shearing rate
(equivalent to the Richardson number but for horizontal shear):

Up U N?
dB= :
ksr” korr 0 K202

(5)
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Figure 7: Schematics of the basic state set-up showing the laminar body-forced velocity profile, in the
different configurations: 6 = 30,45, 60, 76°.

The last term on the right hand side of the momentum equation (Eq. 1) is a forcing term
accounting for combined vertical and horizontal shear instabilities, through a sinusoidal function
and with a dependence on the inclination angle . Because of this, four different geometries
are considered, for § = 30,45, 60,76°, as shown on Fig. 7. This setup is chosen so that the
background flow is triply periodic, which is necessary for our code. It is sinusoidal in both
directions, and by adjusting the height of the box L, we can create larger shear (smaller L)

6 KaAvLl SUMMER PROGRAM IN ASTROPHYSICS 2021



3. Data analysis

or weaker shear (larger L,). The angle 6 is defined such that tan6 = L,/L.. The maximum
shearing rate in the horizontal direction is simply 1 in these units, and the maximum shearing
rate in the vertical direction is thus 1/ tan 6. These could be considered as angles of inclination of
the box in the Sun. In addition to the four inclination angles considered, we have run simulations
for three different Reynolds numbers: Re = 100, 330, 600, associated with three Péclet numbers:
Pe = 10,33,60, and for four different buoyancy parameters: B = 1,10,100,1000. In what
follows, however, we will not discuss the Re = 100 simulations, as most of these fall in the
viscously-dominated regime. With all of this, we have a set of simulations that is comparable
to that of Garaud (2020), but with different vertical shearing rates in addition to the horizontal
shear.

3 Data analysis
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Figure 8: Snapshots for the simulation with the following parameters: Re = 600, Pe = 60, B = 10,60 =
45°, as it evolves with time (from left to right). The colour represents the streamwise velocity. The
top and bottom rows show side views of the box along the streamwise and cross-streamwise directions,
respectively. See text for details.

Fig. 8 shows snapshots for the Re = 600, Pe = 60, B = 10,0 = 45° simulation. The top
row shows side views of the box along the streamwise direction (x — z plane) and the bottom
row along the cross-streamwise direction (y — z plane), at different times of the simulation. The
first snapshots show the initial conditions defined by the forcing term in Eq. 1. The second
snapshots illustrate the development of the primary and secondary instabilities. The third
snapshots show an already pretty turbulent flow. And, lastly, the simulation is run until we
reach a statistically-stationary state, corresponding to the final snapshots.

In order to illustrate this, Fig. 9 (left panel) shows the RMS vertical velocity as a function
of time, for the same simulation. We clearly see the initial exponential growth of the instability
followed by its nonlinear saturation into a statistically-stationary state. Omnce that state is
reached, we then choose a time interval, indicated by the dashed lines, and compute the time-
average and the RMS variability around the mean for this quantity, as well as other parameters
including the RMS total velocity, the temperature dissipation rate, etc. This is done for each
individual simulation.

Another quantity of interest is the vertical length scale of the eddies. To calculate this,
following Garaud et al. (2017), we compute the autocorrelation function in the z-direction of
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Figure 9: Left: RMS vertical velocity as a function of time. The red line shows the mean value computed
in the time interval chosen (vertical dashed lines). Right: Autocorrelation functions in the z-direction
at different timesteps. The red line indicates the resulting estimate for the vertical eddy scale. These
profiles are extracted from the simulation shown in Fig. 8.

the vertical velocity, which is an integral over the whole domain and has the following expression:

Ap(l,t) = (W(z,y, 2, t)0(2, y, 2 +1,1)) . (6)

An example of these is shown on Fig. 9 (right panel). Each line corresponds to an autocorre-
lation function at a different timestep. The vertical eddy scale at a particular time t is taken
as the width at half maximum (A, (1%, ) = 0.54,(0,t)). We then estimate the average of these
values in the statistically-stationary state and report this as the vertical eddy scale, indicated
by the vertical red line.

4 Results

Fig. 10 shows the results obtained for the RMS vertical velocity, the vertical eddy scale, and
the RMS temperature, as a function of the buoyancy parameter. As B increases, we see that
all three parameters decrease. We do not see much scatter in the case of the RMS vertical
velocity and RMS temperature, between the different inclination angles. However, for B = 1,
we note a significant spread in the vertical eddy scale estimates, which is expected from the
more weakly-stratified case. But, already from B = 10, most inclination angles tend towards
the purely horizontal shear case, except for 6 = 76°.

To further illustrate this, Fig. 11 shows two snapshots with a side view of the box in
the cross-streamwise direction (z — z), for Re = 600, Pe = 60,0 = 45°, and B = 1 or B =
100. For B = 1, the background shear is quite apparent and controls the dynamics, which
explains why the vertical eddy scale estimates vary with the inclination angle. On the contrary,
at higher stratification parameters, such as B = 100, the background shear is not apparent
anymore. Instead, there are horizontal meanders at different phases which determine the vertical
eddy scale and, consequently, it is the emergent vertical shear due to these meanders, rather
than the imposed vertical shear, that controls the vertical mixing. In other words, for strong
stratification, the vertical shear does not affect the results.

On Fig. 12 we show the vertical eddy scale as a function of the stratification, but with ad-
ditional lines giving an estimate of the background shear length scale, namely 7 /4 tan§. Eddy
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Figure 10: RMS wertical velocity (top left), vertical eddy scale (top right), and RMS temperature
(bottom), as a function of the buoyancy parameter. Triangles and squares correspond to Re = 330 and
Re = 600 simulations, respectively. The colour scale indicates the inclination angle, with purple points
corresponding to the pure horizontal shear case, for which additional values for intermediate stratifications

have been derived.
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Figure 11: Snapshots of the side view of the box in the cross-streamwise direction (x — z), for the
Re = 600, Pe = 60,0 = 45°, and B =1 (left) or B =100 (right) simulations, during their statistically-
stationary state. The colour represents the streamwise velocity.
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Figure 12: Vertical eddy scale as a function of the buoyancy parameter. The horizontal lines give an
estimate of the background shear length scale at each inclination angle. The symbols and colours are the
same as in Fig. 10.

scales larger than the corresponding background shear length scale, at the same inclination
angle, feel the background shear and deviate from the pure horizontal shear case — as is the
case for B = 1,0 = 76°. On the other hand, eddy scales smaller than the background shear
length scale do not feel it, and tend towards the case where 6§ = (0°.

In summary:

— if the eddy scale is larger than the background shear scale, vertical shear will have an
influence and should be considered;

— but if the eddy scale is lower than the background shear scale, vertical shear is negligible,
which means that scaling laws derived by Garaud (2020) in the context of horizontal shear
continue to apply.

5 Conclusions

From estimates of the internal rotation of the Sun (€Qeq ~ 450 x 107?571 and Qpote ~ 350 x
107?s7!) and of the Brunt-Viisili frequency in the tachocline region (N ~ 1073s7!), one can
estimate the buoyancy parameter to be B ~ N2 /AQ? ~ 108. The vertical length scale can then
be approximated as I, ~ B~1/3L (Garaud, 2020), where L is the horizontal length scale of the
shear which we take as being the radius at the base of the convection zone (rpcz ~ 0.71Rg);
hence [, ~ 0.002 rgcyz. Meanwhile, the thickness of the tachocline has been estimated to be
0 ~ 1-5% of rgeyz; hence § ~ 0.01-0.05 rgcy. Based on this, we find that the vertical eddy scale
is smaller, even if not significantly, than the thickness of the tachocline.

As a conclusion, in the solar tachocline, vertical shear has very little effect on turbulence
hence one can focus on horizontal shear instabilities only, and use the associated scaling laws
derived by Garaud (2020). But it is also known that the tachocline is an extreme case, with a
very strong layer. Other stars do not have such a strong shear layer, as far as we know, and
we suspect that the effect of this vertical shear will be even weaker for those. In general terms,
our findings show that vertical shear is not very important and that it is sufficient to consider
scalings obtained in the pure horizontal shear case, at least when rotation is not important.
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